

1

Benchmarking and Analysis of
Software Data Planes

21-Dec-2017

Table of Content
1	 INTRODUCTION ... 6	

1.1	 PREFACE ... 6	
1.2	 MOTIVATION .. 7	
1.3	 DOCUMENT STRUCTURE ... 8	

2	 TARGET APPLICABILITY ... 9	
2.1	 NETWORK FUNCTION TOPOLOGIES .. 9	
2.2	 BASELINE PACKET PATH .. 9	
2.3	 WITH VIRTUAL MACHINES ... 10	
2.4	 WITH CONTAINERS ... 10	
2.5	 BASELINE VS. VMS VS. CONTAINERS ... 11	

3	 NF BENCHMARKING METRICS .. 12	
3.1	 MEASURING COMPUTER SYSTEM PERFORMANCE ... 12	
3.2	 BENCHMARKING COMPUTE APPLICATIONS ... 12	
3.3	 BENCHMARKING NF APPLICATIONS .. 13	
3.4	 COMPUTE RESOURCES USAGE ... 14	

4	 NF PERFORMANCE TESTS AND RESULTS ANALYSIS ... 17	
4.1	 BENCHMARKED NF APPLICATIONS .. 17	
4.2	 TEST ENVIRONMENT ... 18	

4.2.1	 Test Topology ... 18	
4.2.2	 Tested Configurations .. 18	
4.2.3	 Compute Systems Under Test ... 19	
4.2.4	 Packet Traffic Generator and Offered I/O Load ... 20	

4.3	 BENCHMARK RESULTS AND ANALYSIS .. 20	
4.3.1	 Measurements .. 20	
4.3.2	 Initial Analysis ... 21	

4.3.2.1	 Instructions-per-Packet .. 21	
4.3.2.2	 Instructions-per-Packet – I/O vs. Packet Processing Operations .. 23	
4.3.2.3	 Instructions-per-Cycle ... 24	
4.3.2.4	 Cycles-per-Packet .. 26	
4.3.2.5	 Packets-per-Second Throughput .. 28	
4.3.2.6	 Initial Conclusions ... 28	

4.3.3	 Throughput Speedup Analysis .. 29	
4.3.3.1	 Processor Core Frequency ... 29	
4.3.3.2	 Intel Hyper-Threading with Multi-Threading ... 30	
4.3.3.3	 Multi-Core with Multithreading .. 31	

4.3.4	 Further Analysis ... 33	
4.4	 MEMORY BANDWIDTH CONSUMPTION .. 33	

Maciek Konstantynowicz
mkonstan@cisco.com

Patrick Lu
patrick.lu@intel.com

Shrikant M. Shah
shrikant.m.shah@intel.com

2

4.5	 I/O BANDWIDTH CONSUMPTION .. 34	
4.6	 INTER-SOCKET TRANSACTIONS .. 35	

5	 INTEL X86_64 – PERFORMANCE TELEMETRY AND TOOLS 36	
5.1	 TELEMETRY POINTS IN INTEL® XEON® E5 PROCESSOR ARCHITECTURE 36	
5.2	 PERFORMANCE MONITORING TOOLS ... 37	

6	 COMPUTE PERFORMANCE ANALYSIS USING INTEL TMAM 38	
6.1	 TMAM OVERVIEW ... 38	
6.2	 %RETIRING ... 43	

6.2.1	 %Retiring.Base .. 44	
6.2.2	 %Retiring.Microcode_Sequencer .. 44	

6.3	 %BAD_SPECULATION ... 45	
6.3.1	 %Bad_Speculation.Branch_Mispredicts ... 46	
6.3.2	 %Bad_Speculation.Machine_Clears ... 46	

6.4	 %FRONTEND_BOUND STALLS .. 46	
6.4.1	 %Frontend.Frontend_Latency ... 48	
6.4.2	 %Frontend_Bound.Frontend_Bandwidth .. 48	

6.5	 %BACKEND_BOUND STALLS ... 49	
6.5.1	 %Backend_Bound.Memory_Bound ... 49	

6.5.1.1	 %Backend_Bound.Memory_Bound.L1_Bound .. 50	
6.5.1.2	 %Backend_Bound.Memory_Bound.L2_Bound .. 51	
6.5.1.3	 %Backend_Bound.Memory_Bound.L3_Bound .. 51	
6.5.1.4	 %Backend_Bound.Memory_Bound.System_Memory ... 52	
6.5.1.5	 %Backend_Bound.Memory.Store_Bound .. 52	

6.5.2	 %Backend_Bound.Core Bound .. 52	
6.6	 TMAM MEASUREMENTS – CONCLUSIONS .. 54	

7	 MEMORY PERFORMANCE ANALYSIS .. 56	
7.1	 MONITORING MEMORY BANDWIDTH USING PCM-MEMORY.X 57	
7.2	 MONITORING MEMORY LATENCY .. 59	

8	 PCIE PERFORMANCE ANALYSIS ... 59	
8.1	 UNDERSTANDING PCIE BANDWIDTH CONSUMED BY NIC .. 59	

8.1.1	 Transactions Originated by NIC .. 59	
8.1.2	 Transactions Initiated by CPU .. 60	

8.2	 CALCULATING PCIE BANDWIDTH FROM ETHERNET PACKET RATE 60	
8.3	 INTEL® DIRECT DATA IO TECHNOLOGY (DDIO) .. 61	
8.4	 PCIE PERFORMANCE MONITORING .. 63	
8.5	 NETWORK TRAFFIC ANALYSIS WITH PCM-PCIE.X ... 65	

9	 INTER-CORE AND INTER-SOCKET COMMUNICATION 67	
9.1	 INTER-CORE INTERACTIONS WITHIN THE SOCKET ... 67	
9.2	 INTER-SOCKET INTERACTIONS ... 67	

10	 PERFORMANCE TUNING TIPS .. 69	
10.1	 BASIC TUNING OF THE TEST INFRASTRUCTURE .. 69	
10.2	 SIMPLE PERFORMANCE DEBUGGING GUIDELINES WHILE RUNNING NF APP 69	

11	 CONCLUSIONS ... 71	
12	 REFERENCES .. 72	
13	 APPENDIX: TEST ENVIRONMENT SPECIFICATION ... 73	

13.1	 SYSTEM UNDER TEST – HW PLATFORM CONFIGURATION .. 73	
13.2	 SYSTEM UNDER TEST AND TESTED APPLICATIONS – SOFTWARE VERSIONS 73	

3

13.3	 SERVER BIOS SETTINGS .. 74	
13.4	 PACKET TRAFFIC GENERATOR – CONFIGURATION .. 75	

14	 APPENDIX: BENCHMARKING TOOLS USE GUIDELINES 77	
14.1	 LINUX ‘PERF’ .. 77	
14.2	 PERFORMANCE ANALYSIS USING PMU-TOOLS .. 78	
14.3	 TMAM ANALYSIS USING PMU-TOOLS .. 78	
14.4	 INSTALLING AND USING PCM TOOLS ... 79	

15	 APPENDIX: DEEP-DIVE TMAM ANALYSIS USING LINUX PERF AND PMU-
TOOLS .. 80	

15.1	 EVENTS RELATED TO TMAM %RETIRING ... 80	
15.2	 EVENTS RELATED TO TMAM %BAD_SPECULATION .. 80	
15.3	 EVENTS RELATED TO TMAM %FRONTEND_BOUND ... 81	
15.4	 EVENTS RELATED TO TMAM %BACKEND_BOUND .. 82	
15.5	 MEASURING MEMORY LATENCY ... 83	
15.6	 INTER-PROCESSOR COMMUNICATIONS WITHIN THE SAME SOCKET 83	
15.7	 INTER-SOCKET COMMUNICATIONS .. 84	
15.8	 OTHER USEFUL EVENTS ... 85	

16	 INDEX: FIGURES .. 86	
17	 INDEX: TABLES .. 87	
18	 INDEX: EQUATIONS .. 88	

Space intentionally left blank.

4

“Simplicity is a great virtue but it requires hard work to achieve it and
education to appreciate it. And to make matters worse: complexity sells better.”

“Write a paper promising salvation, make it a "structured" something or a
"virtual" something, or "abstract", "distributed" or "higher-order" or
"applicative" and you can almost be certain of having started a new cult.”

“Program testing can be used to show the presence of bugs, but never to show
their absence!”

Edsger Wybe Dijkstra,
“EWD896: On the nature of Computing Science”,

“EWD 709: My hopes of computing science”,
“EWD249: Notes On Structured Programming”, page 7.

“Je n'ai fait celle-ci plus longue que parce que je n'ai pas eu le loisir de la
faire plus courte.”

“I made this letter longer, only because I have not had the leisure to make
it shorter.”

Blaise Pascal, Provincial Letters: Letter XVI (4 December 1656).

5

Legal Statements from Intel Corporation

FTC Disclaimer

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks. Please refer to the test system configuration in Section 13 Appendix: Test Environment
Specification and Section 14. Appendix: Benchmarking Tools Use Guidelines.

FTC Optimization Notice
Optimization Notice: Intel's compilers and DPDK libraries may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice.

'Mileage May Vary' Disclaimer
Tests document performance of components on a particular test, in specific systems. Differences in hardware, software,
or configuration will affect actual performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete information about performance and benchmark results, visit
http://www.intel.com/benchmarks

Estimated Results Disclosure
Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and
provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance.

Dependencies Disclosure
Intel technologies may require enabled hardware, specific software, or services activation. Check with your system
manufacturer or retailer.

Trade mark Notice
Intel, Xeon, the Intel logo, and other Intel technologies mentioned in this documents are trademarks of Intel
Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Other Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

6

1 Introduction	
1.1 Preface	

There is a growing expectation that Internet network services, underpinned by network
functions, need to evolve and become dynamically instantiated in locations and at
capacity governed by continuously changing and moving service users’ demands. At the
same time, these network functions are required to dynamically and seamlessly handle IP
host/route reachability, end-point security and other fundamental aspects of network
services, delivering them at line-rate speeds with data plane performance being the key
factor. All of these requirements cannot be achieved in practice with dedicated Hardware-
based network service implementations, opening an opportunity for a new generation of
Software-based network functions.

The problem of dynamically and efficiently instantiating Software based Internet services
at a moment notice is not new and has been already tackled by cloud-native architectures
and solutions. It is then natural to consider a cloud-native approach for the new Software
network functions, so that they can benefit from all of the main cloud-native properties,
including:

1. Cloud portability - public, private, hybrid, multi-cloud;

2. Extensibility - modular, pluggable, hookable, composable;
3. Self-healing - automatic placement, restart, replication, scaling;

However, for the cloud-native model to work here, the new Software network functions
must above all provide the high-performance data plane. This is possible only and only if
the network functions are purposefully coded and optimized for compute platforms
(servers and any CPU based devices), addressing their Input / Output and memory
characteristics. It is the “compute-native” network function SW code that is essential to
achieve efficiency, high throughput (packets and bandwidth) and low latency cloud-
native data plane, in order to meet the expectations of wide portability and applicability
to many Internet network service use cases.

This technical paper introduces the main concepts underpinning a systematic
methodology for benchmarking and analysis of compute-native network SW data plane
performance running on modern compute server HW. It applies first principles of
computer science to performance measurements, describing involved aspects of SW-HW
integration and focusing on the optimal usage of compute HW resources critical to the
data plane performance.

Authors believe that following described methodology and defined performance metrics
should enable the industry community to arrive to a well-defined benchmarking standard
and apples-to-apples comparison between different network data plane SW applications.
Furthermore, by accepting these metrics, and using them as a “feed-back loop” for
continuous native code optimizations, the community can continue the drive towards
breaking the barrier of One Terabit SW network data plane speeds per single 2RU server
and increasing the density of data plane network functions and services per unit of
compute.

7

1.2 Motivation	

Analyzing and optimizing performance of software applications has become increasingly
challenging due to the overall computing system complexities involved in their
execution. The compute system stack consisting of layers of Compute Hardware,
Operating System and Software Application, the interactions between these layers and
the continuous rapid technological advancements across the layers, all make the
application performance analysis and optimizations an intricate task.
Performance optimization challenge becomes ever greater if the aim is to aid in
developing performance centered programming patterns and techniques with broad
applicability, great appeal and designed for longevity.
The rising wave of Software Defined Network (SDN) services invading The Internet and
Telecom industry by storm, with associated drive towards proliferation of Network
Function Virtualization (NFV), calls for development of a methodical approach for
analyzing (and optimizing) the performance of network functions implemented in
software.

Network functional area most sensitive to performance optimizations is the data plane.
This is due to the two main properties of network data plane that are difficult to address
with compute systems:

i) Extremely high bandwidth demands for Input / Output operations;

ii) Tight and strict time budget for completing packet processing operations.
Translating these properties into requirements imposed on modern network data planes to
make them handle Gigabit Ethernet rates:

i) Input / Output bandwidth: 10 Gigabit/sec for 10GbE interface, 100 Gigabit/sec for
100GbE interface, and in the future Terabit rates;

ii) Per packet processing time budget dictated by requirement to process rates of
Millions of packets/sec (Mpps): less than 67 nanoseconds (nsec) to handle rates
up to 14.88 Mpps for 10GbE line rate, less than 6.7 nsec to handle rates up to
148.8 Mpps for 100GbE line rate.

This technical paper aims to help to address these challenges by defining a methodology
for systematic performance benchmarking and analysis of compute-native Network
Function data planes executed on Commercial-Off-The-Shelf (COTS) servers, using
available open-source measurement tools. The following key aspects are covered:

i) Description of modern server hardware resources vital for executing network
applications;

ii) Software interactions with hardware and optimizations of software-hardware
interface;

iii) Evaluation of common compute system bottlenecks encountered when
benchmarking network data planes including processor, memory and network I/O
resources.

8

In order to illustrate applicability of defined methodology and proposed measurement
tools, the paper reports benchmarking results and their analysis for a number of example
network data plane applications – DPDK, FD.io VPP, OVS-DPDK – running on modern
high-performance servers.

1.3 Document	Structure	

The paper is organized as follows.

Section 2. Target Applicability describes how the proposed benchmarking methodology
and analysis apply to Network Functions (NF) designs and deployment use cases;
furthermore, it specifies sample NF applications used for benchmarking and analysis in
this paper.

Section 3. NF Benchmarking draws differences and similarities between benchmarking
compute and networking data plane software workloads, and derives a set of baseline
performance metrics for NF data plane evaluations.
Section 4. NF Performance Tests and Results Analysis explains the basic principles of
proposed performance analysis methodology capturing both utilization efficiency of HW
resources and network performance metrics, illustrating them with analysis of sample NF
results.
Section 5. Intel x86_64 – Performance Telemetry and Tools walks thru the telemetry
points in Intel® Xeon® machines, including CPU micro-architecture, I/O and memory
sub-systems vital for executing NF data plane functions; describes used measurement
tools.
Section 6. Compute Performance Analysis using Intel TMAM is dedicated to a detailed
performance analysis of the benchmarked workloads using Top-down Micro Architecture
Method (TMAM).

Section 7. Memory Performance Analysis covers memory performance metrics, with
analysis of results measured for tested NF applications, and Software tool used.
Section 8. PCIe Performance Analysis delves into PCIe transactions and bandwidth
consumed by Ethernet frames, description of Intel® Direct Data IO (DDIO) technology
critical to efficient NF data planes; followed by analysis of PCIe performance
measurements for tested NF workloads, and Software tool used.
Section 9. Inter-Core and Inter-Socket Communication briefly reviews aspects related to
multi-core and multi-socket configurations.
Section 10. Performance Tuning Tips highlights common techniques for achieving peak
performance of NF data plane applications executed on the prescribed platforms.
Section 11. Conclusions summarizes the applicability of proposed benchmarking
methodology and analysis to evaluate NF data plane applications, compare them and
identify areas of code improvement.

Sections 12. to 18. include references, test environment specifications, deeper levels of
TMAM analysis and index of figures, tables and equations.

9

2 Target	Applicability	
2.1 Network	Function	Topologies	

Described benchmarking and analysis methodology applies to a set of Network Function
(NF) data plane packet path and topology scenarios including packet processing and
forwarding between: i) physical interfaces, ii) physical interfaces and multiple Virtual
Machines, and iii) physical interfaces and multiple Containers.

2.2 Baseline	Packet	Path	

The baseline data plane design benchmarked in this paper includes the NF application
running as a user application on a compute host, processing and forwarding packets
between the physical network interfaces hosted on the Network Interface Cards (NICs)
within the system. Linux is used as a host Operating System, to manage access to
available compute resources. NF application is running in Linux user-mode, taking direct
control of the NIC devices, and enabling it to receive and transmit packets through the
physical network interfaces with minimal involvement of Linux kernel in data plane
operation.

The baseline NF data plane benchmarking topology is shown in Figure 1.

Figure 1. Baseline NF data plane benchmarking topology.

In order to measure the actual performance of evaluated sample NF applications, number
of different hardware configurations and hardware resource allocations are employed,
including the scaled-up multi-thread and multi-core layouts.

Presented baseline setup has two main functional parts, i) driving the physical network
interface (physical device I/O) and ii) packet processing (network functions). Both parts
are present in majority of deployments, hence their performance and efficiency can be
used as a baseline benchmarking reference for evaluating compute native scenarios.
Other more complex NF designs involve adding virtual network interfaces (virtual I/O,
memory-based) and more network functions, providing richer composite functionality but
at the same time using more compute resources. In other words, the baseline NF
benchmarking data described in this paper can be treated as an upper ceiling of NF
application capabilities.

10

Sample Virtual Machine (VM) and Container based NF designs are briefly described in
the following sections. Benchmarking, analysis and optimizations of those composite NF
designs is subject to future study.

2.3 With	Virtual	Machines		

A sample design with NF applications running in VMs and NF "service-chain"
forwarding provided by a common virtual switch NF application running in user-mode is
shown in Figure 2.

Figure 2. NF service topologies with NF apps in VMs, connected by vswitch, vrouter.

2.4 With	Containers	

A sample design with NF running in Containers and NF "service-chain" forwarding
provided by a common virtual switch NF application running also in Container is shown
in Figure 3.

11

Figure 3. NF service topologies with NF micro-apps in Containers connected by vswitch,
vrouter.

A variation of NF "service-chain" for NF applications running in Containers using FD.io
memif virtual interface instead of forwarding thru a virtual switch NF, is shown in Figure
4. Note the smaller number of virtual interface and packet processing "hops" involved in
data plane spanning the same number of NF applications.

Figure 4. NF service topologies with NF micro-apps in Containers connected directly

and by vswitch, vrouter.

2.5 Baseline	vs.	VMs	vs.	Containers	

From performance analysis and benchmarking perspective, there is one common element
stands out in VM and Container based packet path designs when compared to the
baseline NF design. It is the need to use a performant fast virtual interface
interconnecting the NF applications within the compute machine. In most cases this
involves memory copy operation(s) that significantly impact the NF data plane
performance. Good examples of virtual interfaces optimized for that purpose are VM
Qemu vhost-user and FD.io VPP Memif for Containers and user-mode processes. More
distributed NF designs and topologies that involve multiple number of compute machines
are just combinations of described NF designs, making the performance analysis
described in this paper directly applicable to those cases.

12

3 NF	Benchmarking	Metrics	
3.1 Measuring	Computer	System	Performance	

Assessing computer system performance is not a trivial task due to complexity of modern
compute systems and a variety of performance improvement techniques used in computer
hardware designs. To address this the industry adopted the classic processor performance
equation that defines execution time as the main and only complete and reliable measure
of computer performance1.

This paper proposes to use the same equation and the program execution time as the
fundamental measure of NF application performance and efficiency.

3.2 Benchmarking	Compute	Applications	

Performance of generic compute applications can be measured using the classic computer
performance equation that defines the program execution time as a reliable measure of
performance:

𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑢𝑛𝑖𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑢𝑛𝑖𝑡

∗
#𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
∗ 𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒

Equation 1. Classic computer performance equation.

The equation includes all the key factors that determine time to execute a program:

1. #instructions/program_unit – number of instructions per program_unit, or how
big the executable program_unit is for a specific task.

2. #cycles/instruction – number of CPU core clock cycles per instruction (CPI), or
how complex are those instructions and how well are they executed on specific
CPU hardware; often expressed as a reciprocal metric – #instructions/cycle
(IPC).

3. cycle_time [sec] – duration of a clock cycle measured in seconds, or how fast is
the actual CPU hardware executing the instructions; represented by inverse
metric of CPU core frequency = cycles/second.

Clearly it is not easy to translate the program unit variable to a modern complex compute
application workload. That is where various benchmarking approaches, suites, and
standards define a variety of program units, that are then applied to measure different
compute systems, their respective sub-systems and operations. Examples of
benchmarking suites include Standard Performance Evaluation Corporation (SPEC),
CoreMark® (EEMBC benchmark), Princeton Application Repository for Shared-
Memory Computers (PARSEC), NASA Advanced Supercomputing (NAS), and Stanford
Parallel Applications for Shared Memory (SPLASH).

1 “Computer Organization and Design, The Hardware/Software Interface” by David A.
Patterson and John L. Hennessy, Section 1.6 Performance, ISBN: 978-0-12-407726-3.

13

3.3 Benchmarking	NF	Applications	

Applying the classic computer performance equation to the Network Function application
and substituting program unit with per network packet processing operations results in a
modified performance equation:

𝑝𝑎𝑐𝑘𝑒𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
∗

#𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

∗ 𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒

Equation 2. Modified computer performance equation for NFV.

This approach, in essence, is treating the NF application workload running on a
computer, as just another program. All generic computer science software workload
efficiency and performance evaluation methodologies and best practices equally apply to
NF workloads.
The Internet and packet networking world, on the other hand, evaluates performance of
network devices (packet processing systems) by using a different set of metrics defined in
IETF specifications RFC 25442 and RFC 12423, with major metrics including:

a) packet throughput measured in packets-per-second [pps];
b) bandwidth throughput measured in bits-per-second [bps];

c) packet loss ratio PLR;
d) packet delay (PD) and delay variation (PDV);

The natural unit of work in networking is a data packet.
Marrying both benchmarking worlds, computing with networking, and to enable simple
apples-to-apples comparison between NF systems, a single data packet-centric program
execution efficiency metric is proposed for benchmarking NF data plane packet
processing – #cycles/packet (CPP):

𝐶𝑃𝑃 =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
∗

#𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

Equation 3. NF data plane efficiency equation binding CPP, IPP and IPC metrics.

Applying it to the modified performance equation:

𝑝𝑎𝑐𝑘𝑒𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] = 𝐶𝑃𝑃 ∗ 𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] =
𝐶𝑃𝑃

𝐶𝑃𝑈_𝑓𝑟𝑒𝑞	[𝐻𝑧]

Equation 4. NF computer performance equation with CPP.

And making a final connection, following is a formula binding the IETF benchmarking
packet throughput metric and the CPP metric:

2 RFC 2544, “Benchmarking Methodology for Network Interconnect Devices”, March
1999, https://tools.ietf.org/html/rfc2544.
3 RFC 1242, “Benchmarking Terminology for Network Interconnection Devices”, July
1991, https://tools.ietf.org/html/rfc1242.

14

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	[𝑝𝑝𝑠] =
1

𝑝𝑎𝑐𝑘𝑒𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐]
= 	
𝐶𝑃𝑈_𝑓𝑟𝑒𝑞	[𝐻𝑧]

𝐶𝑃𝑃

Equation 5. Binding the packet Throughput [pps] and CPP benchmarking metrics.

CPP represents NF application program execution efficiency for a specific set of packet
processing operations. Following sections show how the CPP metric can be put to
effective use for comparing network workload performance across different packet
processing scenarios, NF applications and compute platforms. To further characterize NF
application efficiency underpinning CPP, a number of additional compute performance
metrics are also described, with analysis of their applicability to benchmarking NF
workloads.
Clearly it is hard to measure CPP on an individual packet basis in real-time high-
performance NF system. Measurements reported in this paper use average values of CPP
measured across packet flows undergoing the same packet processing operation.

3.4 Compute	Resources	Usage	

Optimizing performance of a compute system usually involves going through an iterative
process of analysis and tuning across involved Software and Hardware system
components and layers. Network centric software applications exercise and stress
multiple parts of the CPU micro-architecture, and the first order performance analysis is
to establish which of these parts are top-level limiting hotspots and bottlenecks. This in
turn translates into a set of basic questions and top-level performance and efficiency
metrics:
1) Packet processing operations on CPU core(s)

a. What is the efficiency of the NF software and compiler to perform specified
packet operations – How many instructions are executed per packet?

b. What is the instruction execution efficiency of an underlying CPU micro-
architecture – How many instructions are executed per CPU core clock cycle?

2) Memory bandwidth – What is the memory bandwidth utilization?
3) I/O bandwidth – What is the PCIe I/O bandwidth utilization?

4) Inter-socket transactions – What is the inter-processor cross-NUMA connection
utilization? (applicable for multi-socket machines)

Figure 5 below. depicts the high-level performance probing points related to above
questions in the two-socket compute server based on Intel® Xeon® processor E5 v4
Family.

15

Figure 5. Points of high-level performance statistics in two-socket Intel® Xeon® server.

In many cases performance metrics for networking workloads are expressed in terms of
packet processing in packet/sec [pps] or Gbits/sec [Gbps], or packet connections
established per seconds, or some other packet-centric operations/sec. This leads to
expressing the basic performance questions from the perspective of packet-centric
operations, as follows:

1) Packet processing operations – How many CPU core cycles are required to process
a packet?

2) Memory bandwidth – How many memory-read and -write accesses are made per
packet?

3) I/O bandwidth – How many bytes are transferred over PCIe link per packet?
4) Inter-socket transactions – How many bytes are accessed from the other socket or

other core in the same socket per packet?
The main goal for any performance optimization exercise is to get the best performance
with the minimum CPU micro-architecture resources.
For network workloads, as outlined in Section 3 NF Benchmarking Metrics, the key
indicator is the number of clocks required to process a packet. Recalling the CPP
equation:

𝐶𝑃𝑃 =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
∗

#𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

Equation 6. NF computer performance equation with CPP.

Socket 0

E5-2600v4
Series
Processor

Socket 1

E5-2600v4
Series
Processor

1

D
D

R
4

QPI

QPI

4
1

D
D

R
4

D
D

R
4

2

Ethernet

2D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

SATA

B
I
O
S

PCH

P
C

Ie

x8

P
C

Ie

x8
P

C
Ie

x8

P
C

Ie

x8

P
C

Ie

x8 3

P
C

Ie

x8

P
C

Ie

x8

P
C

Ie

x8

P
C

Ie

x8

P
C

Ie

x8 3

16

The first metric, #instructions/packet IPP, depends on the program structure and logic,
complier optimizations and several other optimization techniques that can bring down the
IPP ratio for specific packet processing function. Code optimization examples include
DPDK and VPP vectorization code employing CPU Vector instructions such as SSE2,
AVX2 to process multiple packets with a single instruction.
The second metric, #cycles/instruction, or equivalent reciprocal metric
#instructions/cycle (IPC), is one of the most important indicators of an execution
efficiency on a specific CPU micro-architecture.

Software developers use several optimization techniques to achieve peak IPC. A good
example is FD.io VPP, where vector packet processing employs adaptive packets
batching and graph-of-nodes program structure to optimize use of CPU core cache
hierarchy for both data and instructions, in turn reducing per packet memory access and
clock cycles per packet.
In the tested generation of Intel® CPU micro-architecture (code-named Broadwell), the
ALU execution unit can retire up to 4 instructions per each clock cycle. This simply
means that theoretical IPC is 4.0. Extremely compute oriented workloads can have IPC
of more than 3. However, IPC of 2.5 to 3 is still considered very efficient.
Following sections walk through each of these benchmarking dimensions, describing
performance counters available in Intel® Xeon® processor E5 v4 family x86_64 micro-
architecture, listing and explaining associated metrics and available measurement tools,
as well as illustrating their applicability and use for sample NF applications.

17

4 NF	Performance	Tests	and	Results	Analysis	
4.1 Benchmarked	NF	Applications	

A set of diverse NF applications has been used to illustrate the applicability of
performance evaluation and analysis methodology described in this paper. They are listed
in increasing level of packet processing complexity in Table 1.

Idx Application

Name
Application Type Benchmarked Configuration

1 EEMBC
CoreMark®4

Compute benchmark Runs computations in L1 core cache.

2 DPDK Testpmd5 DPDK example Baseline L2 packet looping, point-to-
point.

3 DPDK L3Fwd DPDK example Baseline IPv4 forwarding, /8 entries.

4 FD.io VPP6 NF application vSwitch with L2 port patch, point-to-
point.

5 FD.io VPP NF application vSwitch MAC learning and switching.

6 OVS-DPDK7 NF application vSwitch with L2 port cross-connect,
point-to-point.

7 FD.io VPP NF application vSwitch with IPv4 routing, /32 entries.
Table 1. Example applications benchmarked in this paper.

The first benchmark is chosen to compare pure compute performance against rest of
benchmarks having I/O as well.

The benchmarks 2. and 3. cover basic packet processing operations covering both I/O and
compute aspects of the system. The packet processing functionalities increase with each
benchmark in the order, and so does the compute requirements.
The last four benchmarks, listed as 4. to 7. cover the performance of the virtual switch,
one of the most important ingredient in NF infrastructure. Virtual switch applications are
tested in L2 switching and IPv4 routing configurations, covering both different
implementations and various packet switching scenarios.

4 EEMBC CoreMark - http://www.eembc.org/index.php.
5 DPDK testpmd - http://dpdk.org/doc/guides/testpmd_app_ug/index.html.
6 FDio VPP – Fast Data IO packet processing platform, docs:
https://wiki.fd.io/view/VPP, code: https://git.fd.io/vpp/.
7 OVS-DPDK - https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-
overview.

18

4.2 Test	Environment	

4.2.1 Test	Topology	

All benchmarking tests described and referred to in this paper used a simple two-node
topology with System Under Test server node and packet Traffic Generator node.
Physical test topology is illustrated in Figure 6.

Figure 6. NF Applications Performance Test - Physical Topology.

4.2.2 Tested	Configurations	

For the sake of the focused evaluation, the paper limits the specifics of performance
analysis methodologies to a single CPU micro-architecture, namely Intel® Xeon® E5 v4
Family (formerly known as Broadwell-EP). However, the methodology is equally
applicable to other recent Intel x86_64 micro-architectures and other CPU types.
All applications run in user-mode on Linux. To evaluate dependencies on key CPU
parameters e.g. core frequency, the benchmarks are executed on two Xeon® servers, each
with two CPU sockets and different Intel® Xeon® E5 v4 family processors.

Idx Core Frequency Core Density Intel® Xeon® Processor Model

Server1 2.20 GHz (Low) 22C (High) E5-2699v4 55MB 145W

Server2 3.20 GHz (High) 8C (Low) E5-2667v4 25MB 135W
Table 2. Benchmarked server processor specifications.

x86
Server

Packet	Traffic	Generator

NIC1

Socket	0
Xeon	Processor

E5-2699v4	or	E5-2697v4

NIC2 NIC3 NIC4 NIC5
20	of

10GbE	interfaces

x8 x8 x8 x8 x8 PCIe Gen3

Socket	1
Xeon	Processor

E5-2699v4	or	E5-2697v4

DDR4

R

19

Except processors, the servers are otherwise identical from both Hardware and Software
stack perspective. The exact compute server specifications in terms of used Hardware8
and Software9 operating stack have been provided in Section 13. Appendix: Test
Environment Specification.

NF applications’ data planes are benchmarked while running on a single physical CPU
core, followed by multi-core tests to measure performance speed-up when adding CPU
core resources. In order to stay within the known network I/O limits of the system,
following multi-core and multi-10GbE port combinations have been chosen.

Table 3. Benchmark test variations for listed software applications.

Two main network I/O bottlenecks that drove above choices are: i) 14.88 Mpps 10GbE
linerate for 64B Ethernet frames, and ii) 35.8 Mpps frame forwarding rate limit per used
NIC cards (Intel® X710-DA4 4p10GbE). PCI Gen3 x8 slots’ bandwidth has not been
identified as a bottleneck in any of the benchmarks reported in this paper.

All tests are executed without and with hardware Symmetric Multi-Threading10 using
Intel® Hyper-Threading, with consistent mappings of threads to physical cores to 10GbE
ports.
All tests are executed using CPU cores located on a single socket and using single
NUMA node resources.

4.2.3 Compute	Systems	Under	Test	

All benchmarked Software applications were executed on Supermicro® servers, each
fitted with two Intel® Xeon® E5 v4 Family processors.
Details of Systems Under Test and benchmarking environment have been provided in
Section 13. Appendix: Test Environment Specification.

8 Hardware – Xeon® server motherboards by Supermicro®, NICs by Intel® 4p10GE
X710.
9 Software stack – Operating System Linux 16.04 LTS.
10 Symmetric Multi-Threading (SMT) – hardware-based parallel execution of
independent threads to better utilize micro-architecture resources of CPU core.

																																#	of	cores		used

Benchmarked	Workload
1	core 2	core 3	core 4	core 8	core

DPDK-Testpmd	L2	Loop 8 16 20 20 20
DPDK-L3Fwd	IPv4	Forwarding 4 8 12 16 16
VPP	L2	Patch	Cross-Connect 2 4 6 8 16
VPP	L2	MAC	Switching 2 4 6 8 16
OVS-DPDK	L2	Cross-Connect 2 4 6 8 16
VPP	IPv4	Routing 2 4 6 8 16

Number	of	10	GbE	ports	used	per	test

20

4.2.4 Packet	Traffic	Generator	and	Offered	I/O	Load	

Ixia®11 packet traffic generator was used for all tests. Purpose developed automation test
tools used Ixia Python API for controlling the traffic generator and to ensure consistent
execution across multiple test iterations.

Configured network I/O packet load for the L2 tests involved 3,125 distinct (source,
destination) MAC flows generated per interface, and highest scale of 50,000 flows for 16
of 10GbE interfaces. Each IPv4 test involved 62,500 distinct (source, destination) IPv4
flows per interface, and highest scale of 1,000,000 IPv4 flows. All flows were configured
with 64Byte Ethernet L2 frame size.
Details of packet traffic generator configuration have been provided in Section 13.
Appendix: Test Environment Specification.

4.3 Benchmark	Results	and	Analysis	

4.3.1 Measurements		

Following tables show the test results for benchmarked NF applications including all
identified high-level performance and efficiency metrics: i) Throughput #packets/sec
[Mpps], ii) #instructions/packet (IPP), iii) #instructions/cycle (IPC) and iv) resulting
#cycles/packet (CPP). EEMBC CoreMark® benchmark results are listed for comparison
of CPU core usage metrics, more specifically #instructions/cycle.

All benchmarked NF applications focus on packet header processing. Therefore, all
benchmarks were conducted with smallest possible Ethernet frame size (64B), as it
creates maximum stress scenario on processor cores, network devices, and interactions
among them. In other words, the benchmarks are aimed at achieving maximum packets
per second processing rate and throughput.
Results for the two tested processor types, Intel® Xeon® E5-2699v4 2.2 GHz and Intel®
Xeon® E5-2667v4 3.2 GHz, are listed in Table 4 and Table 5 respectively.

Table 4. Performance and efficiency measured on Intel® Xeon® E5-2699v4 2.2 GHz.

11 Other names and brands may be claimed as the property of others.

The	following	table	lists	the	three	efficiency	metrics	that	matter	for	networking	apps:	i)	instructions-per-packet	(IPP),	ii)	instructions-per-cycle	(IPC)	and	iii)	resulting	cycles-per-packet	(CPP)	for	apps	benchmarked	in	this	paper.

Benchmarked	Workload

Dedicated	1	physical	core	with	=> noHT HT noHT HT noHT HT noHT HT
CoreMark	 [Relative	to	CMPS	ref*] 1.00 1.23 n/a n/a 2.4 3.1 n/a n/a
DPDK-Testpmd	L2	Loop 34.6 44.9 92 97 1.4 2.0 64 49
DPDK-L3Fwd	IPv4	Forwarding 24.5 34.0 139 140 1.5 2.2 90 65
VPP	L2	Patch	Cross-Connect 15.7 19.1 272 273 1.9 2.4 140 115
VPP	L2	MAC	Switching 8.7 10.4 542 563 2.1 2.7 253 212
OVS-DPDK	L2	Cross-connect 8.2 11.0 533 511 2.0 2.6 269 199
VPP	IPv4	Routing 10.5 12.2 496 499 2.4 2.8 210 180

Throughput	
[Mpps]

#instructions	
/packet

#instructions	
/cycle

#cycles	
/packet

*CoreMarkPerSecond	reference	value 	-	score	in	the	reference	configuration:	E5-2699v4,	1	Core	noHT.

21

Table 5. Performance and efficiency measured on Intel® Xeon® E5-2667v4 3.2 GHz.

Next sections provide analysis and interpretation of reported benchmarking results. Initial
analysis of measured (and derived) baseline packet processing performance metrics is
delivered first, followed by analysis of throughput speedup due to core frequency
increase, use of Intel Hyper-Threading and use of multi-threading across multiple cores.
Initial analysis is concluded with review of memory bandwidth consumption, PCIe I/O
bandwidth consumption and inter-socket transactions measured during the benchmarking.

4.3.2 Initial	Analysis	

Here are the initial observations of measured baseline performance and efficiency
metrics. Any references to measured values with Intel Hyper-Threading enabled (HT
columns in tables) are quoted outside the round brackets, values with Intel Hyper-
Threading disabled (noHT columns in tables) are quoted inside the round brackets. In
cases when different values are measured on processors E5-2699v4 (2.2 GHz) and E5-
2667v4 (3.2 GHz), they are referred to as a range of values N-M, respectively.

4.3.2.1 Instructions-per-Packet	

Instructions-per-Packet metric (IPP, #instructions/packet) greatly depends on the number
and type of packet processing operations required to realize a specific network function
(or set of network functions), and how optimally they are programmed. One expects the
simpler the function, the smaller number of instructions per packet, as illustrated in
Figure 7 for benchmarked NF applications.

The	following	table	lists	the	three	efficiency	metrics	that	matter	for	networking	apps:	i)	instructions-per-packet	(IPP),	ii)	instructions-per-cycle	(IPC)	and	iii)	resulting	cycles-per-packet	(CPP)	for	apps	benchmarked	in	this	paper.

Benchmarked	Workload

Dedicated	1	physical	core	with	=> noHT HT noHT HT noHT HT noHT HT
CoreMark	 [Relative	to	CMPS	ref*] 1.45 1.79 n/a n/a 2.4 3.1 n/a n/a
DPDK-Testpmd	L2	Loop 47.0 63.8 92 96 1.4 1.9 68 50
DPDK-L3Fwd	IPv4	Forwarding 34.9 48.0 139 139 1.5 2.1 92 67
VPP	L2	Patch	Cross-Connect 22.2 27.1 273 274 1.9 2.3 144 118
VPP	L2	MAC	Switching 12.3 14.7 542 563 2.1 2.6 259 218
OVS-DPDK	L2	Cross-Connect 11.8 14.6 531 490 2.0 2.2 272 220
VPP	IPv4	Routing 15.1 17.8 494 497 2.3 2.8 212 180
*CoreMarkPerSecond	reference	value 	-	score	in	the	reference	configuration:	E5-2699v4,	1	Core	noHT.

Throughput	
[Mpps]

#instructions	
/packet

#instructions	
/cycle

#cycles	
/packet

22

Figure 7. Number of instructions per packet for benchmarked applications.

And this is exactly what can be glanced from listed results when comparing DPDK-
Testpmd L2 packet looping function yielding IPP of 96-97 (92) with VPP and OVS-
DPDK L2 Cross-connect, yielding 273-274 (273) and 490-511 (531-533) respectively.
Significant IPP difference between VPP and OVS-DPDK indicates more optimally
programmed operations on VPP for this relatively simple L2 Cross-connect network
function. Notably VPP L2 Switching has a lower IPP of 563 (542), when compared to
OVS-DPDK L2 Cross-connect.

Similar effect of substantial difference in offered network functionality is visible when
comparing DPDK-L3Fwd IPv4 forwarding with VPP IPv4 routing functions, yielding
IPP of 139 (139-140) and 497-499 (494-496) respectively. VPP implements a complete
set of production-ready IPv4 routing functions that DPDK-L3Fwd lacks, including
counters, error checks, complete header processing.
There is another aspect worth noting here. All of the NF applications tested do rely on the
same DPDK NIC driver, and albeit they may differ in usage of the driver code, DPDK
driver is the common program component.

With DPDK-Testpmd implementing the thinner network function from the tested lot (it
is just a basic packet loop function between Rx and Tx), DPDK-Testpmd program
spends most of its instructions on I/O interface operations between the CPU core and the
NIC card(s), and as such provides a good estimate of the associated IPP cost of these
operations for other NF applications tested.
There is one anomaly observed for OVS-DPDK L2 Cross-Connect, with ~5% difference
in instruction/packet count between the two processors tested in HT mode (511 vs. 490),
due to different #instructions/cycle measured for this case. Further explanation is given in
Section 4.3.2.3 Instructions-per-Cycle.

23

Note that the reported instructions-per-packet are measured indirectly, calculated using
the formula IPP = IPC * CPP. IPC is measured through the performance counters
whereas CPP is derived from the packet throughput rate measured by the traffic generator
and the core frequency (see Equation 5).

4.3.2.2 Instructions-per-Packet	–	I/O	vs.	Packet	Processing	Operations	

Additional insight into the instructions-per-packet metric for tested NF applications is
provided by using Intel Processor Trace (PT) tool on tested Intel® Xeon® E5 v4
Familyprocessors. PT is an Intel CPU feature that records branch retiring histories and
stores them in highly compressed format in memory. Through post-processing PT data,
users can reconstruct the exact runtime program execution flow and identify functions
and number of instructions executed for different types of per packet operations.

For the purpose of this paper, PT data was captured using Linux perf-record tool and then
translated to instruction logs with Linux perf-script tool. All of the benchmarked NF
applications use loops to process packet in batches and the instruction logs represent a
unroll view of these batch processing loops. With further post-processing, the instruction
logs were divided into groups starting at a DPDK receive function and ending at the next
DPDK transmit function. Each group of instruction logs signifies packet processing of
single packet batch. Packet batch size information can be obtained either via
understanding of specific NF application or by inspecting DPDK receive function
instruction counts (since packets are received in a loop and each loop iteration will have
fixed number of instructions). Finally, after dividing instructions-per-packet-batch by
packet-batch-size, one can estimate the instructions-per-packet with additional inside on
the type of functions and operations being executed per packet.

Figure 8 shows post-processed PT data generated for benchmarked NF applications,
splitting per packet instructions into three categories: a) I/O operations, b) packet
processing operations and c) application other operations.

24

Figure 8. Instructions per packet split into I/O, packet processing, application other.

Presented Processor Trace data must be treated as indicative, due to restricted
functionality of the first generation of PT supported on tested Intel® Xeon® E5 v4
Familyprocessors, with tracing consuming substantial resources. Next generation of
Intel® Xeon® processors support enhanced PT functionality with greatly reduced
resource footprint, enabling more granular and accurate analysis of run-time execution of
functions and instructions, and allows for core clock cycle usage tracking.
Even from this indicative data, it is clear the DPDK-Testpmd IPP metric is dominated by
I/O operations with almost no instructions spent on processing packets. For DPDK-
L3Fwd and VPP L2 Patch Cross-Connect I/O operations still dominate the IPP budget,
but packet processing instruction count becomes substantial, about 40% and 20% of the
overall IPP value respectively. For remaining NF applications, IPP metric is dominated
by packet processing operations, with I/O constituting 20 to 40% of the overall IPP value.
Noticeably, for all tested scaled-up VPP configurations, both L2 MAC switching and
IPv4 routing, I/O instructions still consume 40% of the overall instruction-per-packet
metric, a substantial amount.

4.3.2.3 Instructions-per-Cycle	

There is a number of underlying reasons behind the low (i.e. below 2) values of
Instructions-per-Cycle metric (IPC, #instructions/cycle). The most common is CPU core
waiting for the data from various levels of cache or system memory. This especially
applies to memory and I/O intensive programs like NF data planes. On the other extreme,
IPC can go artificially high if software program is polling for a variable to be updated by
I/O or another core in a tight loop. In this case, little effective work is done, but IPC goes
high due to execution of a small piece of code in the tight loop. In such case, per CPP
Equation 3, this would also mean that IPP will show high number of instructions per
packet even though part of the instructions are consumed while polling and not for actual

0.0

100.0

200.0

300.0

400.0

500.0

600.0

DPDK-Testpmd	L2	
Loop

DPDK-L3Fwd	IPv4	
Forwarding

VPP	L2	Patch	Cross-
Connect

VPP	L2	MAC	
Switching

OVS-DPDK	L2	Cross-
Connect

VPP	IPv4	Routing

#instructions/packet	split	 into:
(a)	I/O	Operations,	(b)	Packet	Processing,	(c)	Application	Other

(a)	 I/O	Operations
(b)	Packet	Processing
(c)	Application	Other

#instr/pkt

25

packet processing. Nevertheless, IPC is usually the first attribute to be looked at for any
program performance analysis.

Figure 9. Number of instructions per core clock cycle for benchmarked applications.

From all benchmarked workloads, CoreMark scores the highest IPC of 3.1 (2.4) with
Hyper-Threading yielding a 29% increase due to more efficient use of out-of-order core
execution engine that HT brings. CoreMark program fully executes in L1 cache, and
clearly does not suffer from cache hierarchy or memory induced delays, what explains
such a high score, out of theoretical maximum of 4.0 in tested CPUs. CoreMark IPC
score is used as a reference to compare NF workloads against.
The closest to CoreMark is VPP IPv4 Routing with IPC scores of 2.8 (2.3-2.4) yielding
17% increase with HT. Here VPP is as efficient as CoreMark w/o HT, and only 10% less
efficient w/ HT. Knowing the levels of I/O load and cache/memory load involved, this
indicates extremely optimized code in VPP for IPv4 routing path.
Next are VPP L2 Switching and OVS-DPDK L2 Cross-connect scoring 2.6-2.7 (2.1)
and 2.7 (2.2) respectively. These are still good IPC scores, especially w/HT, but clearly in
both cases L2 packet paths are less performance optimized compared to VPP for IPv4
routing path.
VPP L2 Cross-connect follows with IPC of 2.3-2.4 (2.2) and scores lower than VPP L2
switching path, an interesting phenomenon. Most likely it is down to I/O packet move
operations dominating L2 Cross-connect packet processing path, with associated intense
interactions with cache hierarchy, memory and I/O sub-systems. Further runtime
measurements are required to fully determine the reason here (e.g. by using recently
available Intel® Processor Trace tooling), and are subject to further study.
Trailing the pack from IPC score perspective are DPDK-Testpmd and DPDK-L3Fwd
with IPC scores of 1.9-2.0 (1.4) and 2.1-2.2 (1.5). Albeit still scoring IPC above 2 w/ HT,

26

both DPDK sample applications have substantially lower scores compared to all other
applications tested. Similarly, to VPP L2 Cross-connect case, it is mostly due to their
operations being dominated by I/O vs. packet processing, as explained the lower IPC
score in the opening paragraph to this section. Further study and runtime measurements
are required to fully determine the reason and difference against other workloads tested.
Repeated measurements registered one anomaly for OVS-DPDK L2 Cross-Connect,
where IPC gets reduced by 15% (from 2.6 to 2.3) when scaling the frequency in HT
mode. This indicates the workload is less efficient in hiding the latency of Last Level
Cache (LLC), memory and PCIe I/O access when two parallel threads are run at higher
core frequency. This is due to the fact that LLC, memory, and PCIe complex have their
own frequency domains independent from the core, and IPC may not necessarily remain
the same as the load increases and a core’s access patterns to these domains change.

IPC is measured using Intel® on-chip Performance Monitoring Units (PMUs) hardware
counters embedded in tested CPUs. Section 5.1 Telemetry Points in Intel® Xeon® E5
Processor Architecture describes the PMU architecture of Intel® Xeon® E5 v4 Family
processors in more detail.

Note of caution: One should not overstress the importance of IPC metric as a standalone
program execution efficiency measure. It is IPC in combination with IPP that more
accurately represent the actual network function implementation efficiency. And this
brings us to the CPP metric.

4.3.2.4 Cycles-per-Packet	

Cycles-per-Packet metric (CPP, #cycles/packet) is the direct measure of time spent by
compute machine in processing a packet. Serious software optimization techniques
analyze cycles consumed by different packet processing functions and try to save every
cycle possible. Clearly this technique has been applied to all NF applications tested, as all
of them measure good CPP values.

27

Figure 10. Number of core clock cycles per packet for benchmarked applications.

Still there are some interesting differences.

DPDK-Testpmd and DPDK-L3Fwd lead the pack with lowest CPP values of 49-50 (64-
68) and 65-67 (90-92) respectively. These low CPP values reflect the fact that both
applications are dominated by DPDK I/O operations, with minimal additional packet
processing. All other benchmarked NF applications and packet paths use the same DPDK
I/O operations, but then they implement complete network functions that call more
packet processing operations. And it all adds up.

What is interesting are the lower CPP values for VPP compared to OVS-DPDK. They do
result from VPP leading with both IPP and IPC metrics across all packet paths as noted
earlier. Among different VPP packet paths, L2 Cross-connect comes as the lowest-cost
cycle-wise with 115-118 (140-144), what is not surprising as it is the simplest packet
path. But then surprisingly it is followed by VPP IPv4 Routing packet path with
impressive CPP of 180 (210-212), ahead of VPP L2 Switching with CPP of 212-218
(253-259). This is expected due to L2 switching path having to deal with both source and
destination address lookup, as seen in higher #instr/packet measurements reported in the
earlier section. All VPP packet paths compare favorably with OVS-DPDK L2 Cross-
connect with CPP of 199-220 (269-272).

All tests show lower CPP value (an improvement, as lower is better) for tests w/ HT
compared to w/o HT, confirming expectation that Hyper-Threading improves physical
core utilization efficiency. However, the relative change differs across the NF
applications. DPDK-Testpmd shows 23% to 26% decrease of CPP value. Similarly,
DPDK-L3Fwd shows 27% to 28% decrease. VPP on the other hand shows a lower
decrease of CPP between 14% and 18% depending on the packet path tested. OVS-
DPDK measured CPP value decrease of 20% to 30%.

28

Also note that when CPP remains almost the same for both high and low frequency
CPUs, it directly implies that the performance scales linearly with cpu frequency.

Reported average #cycles-per-packet are measured indirectly, calculated using the
formula CPP = Core_Frequency / Throughput [pps].

4.3.2.5 Packets-per-Second	Throughput	

Measured packet throughput [Mpps] values are inversely proportional to reported CPP
values, therefore the same observations noted for CPP equally apply here. The Mpps per
core metric is very commonly used as a basic performance sizing metric for NF data
plane capacity planning. Especially that it also used as the main reference value for
analyzing multi-threading performance speedup.

Figure 11. Packet Throughput Rate for benchmarked applications with a single core.

Reported packet throughput [Mpps] values are measured directly using Ixia® traffic
generator.

4.3.2.6 Initial	Conclusions	

From reported performance data and the initial observations, it is clear that all tested NF
applications have been quite well optimized for performance on Intel® Xeon® E5 v4
Family processors. Noted efficiency differences between the DPDK Testpmd and L3Fwd
and all other NF workloads result from DPDK applications focusing mainly on I/O
operations with minimal packet processing. Furthermore, looking specifically at
cycles/packet (CPP) metrics measured for VPP and OVS-DPDK, VPP clearly leads with
lowest CPP values and highest packet throughput rates for all tested packet paths and
configurations. This is a good indicator of levels of optimizations present in VPP data
plane and its leadership in software data plane space.

29

It is also clear that CPP is indeed the base efficiency metric that allows for direct
comparison of NF data plane implementations. It applies when comparing the same
network function implemented in different NF Apps running on the same HW, and
equally when running the same NF Apps on different HW or in different configurations.
CPP is a metric that binds other efficiency metrics (see Equation 3) and the metric that
directly translates into the main packet forwarding performance metric, the packet
throughput rate (see Equation 5).

4.3.3 Throughput	Speedup	Analysis	

4.3.3.1 Processor	Core	Frequency	

One expects performance to proportionally scale with processor core frequency, in
perfect case. For pure compute workloads, the faster the clock frequency, proportionally
more work is executed. For networking loads, perfect scaling with frequency means
constant CPP, and proportionally more packets being processed per second. And this
indeed applies to the benchmarked NF applications.
Figure 12 shows relative packet throughput increase between E5-2699v4 processor
clocked at 2.2 GHz and E5-2667v4 processor clocked at 3.2 GHz.

Figure 12. Packet throughput speedup with core frequency increase.

Although benchmarked NF applications show reasonably linear scaling of performance
with frequency, such close to perfect scaling may not be always achievable for a number
of reasons. Here some common examples:

• By increasing core frequency, performance could hit to Gigabit Ethernet link line-
rate, NIC packet throughput limit or PCIe slot I/O bandwidth limit.

30

• Workload cannot hide latency of Last Level Cache, memory, or I/O access. LLC,
memory, and PCIe have their own independent frequency domains different than the
core, and if they become an impacting factor the performance would not linearly scale
with the core frequency. This is the most likely reason behind the anomaly observed
for OVS-DPDK L2 Cross-Connect, with lower than expected throughput speedup.

• Cores are contending for the same cache-line frequently (e.g. spin locks), wasting
uncertain number of cycles at different core frequencies.

4.3.3.2 Intel	Hyper-Threading	with	Multi-Threading	

Intel® Hyper-Threading (HT), an implementation of Simultaneous Multi-Threading
(SMT), is a technique for improving the overall instruction execution efficiency of
superscalar processor CPUs by using hardware multi-threading. In general, SMT is
expected to permit multiple independent program threads of execution to better utilize the
resources provided by any modern processor architecture.
Intel HT enables single physical processor core to appear and behave as two logical
processors to the operating system. Each logical processor has its own architecture state
and has its own full set of data registers, segment registers, control registers, debug
registers, and most of the Model Specific Registers (MSR) used to control x86 cores.
Each hyper-thread has also its own advanced programmable interrupt controller (APIC).
The logical cores share the Frontend and Backend resources in the physical cores
including L1, L2 caches, execution engines, instruction decoder, schedulers, buffers,
uncore interface logic.
The core achieves hyper-thread level parallelism by out-of-order scheduling to maximize
the use of execution units during each cycle. In essence, a hyper-thread would try to use
unused execution slots when its pairing hyper-thread is either idle or cannot make
forward progress due to execution stalls. If both hyper-threads are competing, they would
share resources in a fair manner. As a result, performance metrics per physical core could
change when using hyper-threads compared to the non-hyper-thread situation:

i) Overall #instructions/packet metric could improve due to the hyper-thread level
parallelism;

ii) Percentage of retiring instructions could increase due to the increased utilization
of the core execution resources;

iii) Average percentage of the core backend bound penalty could decrease;

iv) Average percentage of the core frontend bound penalty could increase, as more
instructions are demanded and executed by the core backend.

The performance change between Hyper-Thread and non-Hyper-Thread setups highly
depends on the characteristics of the programs running on each thread.

For more detailed description of Intel Hyper-Threading technology please refer to
available online Intel documentation12.

12 Intel Hyper-Threading, https://www.intel.com/content/www/us/en/architecture-and-
technology/hyper-threading/hyper-threading-technology.html.

31

Figure 13. Packet throughput speedup with Intel Hyper-Threading.

All benchmarked NF applications demonstrate a packet throughput increase when paired
threads are running on Hyper-Thread enabled processors. DPDK-Testpmd and DPDK-
L3Fwd exhibit greatest performance speedup of ~1.3 to ~1.4 (~30 to ~40% increase),
with the rest of the NF applications’ speedup due to use of HT in the range of ~1.13 to
~1.25 (~13 to ~25%). The main difference between these two groups of NF applications
is the former ones executing a limited number of packet processing operations, with their
#instructions/packet budget dominated by I/O operations, as pointed out in Section
4.3.2.1 Instructions-per-Packet. Further analysis of this phenomena is provided in Section
6 Compute Performance Analysis using Intel TMAM. that describes analysis and
interpretation of processor performance counters data using Intel TMAM methodology.

4.3.3.3 Multi-Core	with	Multithreading	

Most of NF applications are nowadays capable of running multiple SW threads dealing
with data plane packet processing. Subject to the actual SW implementation, the gain of
running multithreaded and multi-core greatly depends on contention for shared HW
resources (cache, memory, I/O) and synchronization (locks, synchronization, load
imbalance). Only in ideal situation the speedup resulting of using multiple cores is
actually linear.
Figure 14 graphs show measured packet throughput performance for all benchmarked NF
applications, running in multi-threaded configurations ranging from 1 to 8 cores, without
Hyper-Threading (1 thread per each core) and with Hyper-Threading (2 threads per each
core). For comparison, perfect linear multi-core speedup is plotted based on single core
performance. All tests are done with 64Byte Ethernet frames on the compute machine
with Intel® Xeon® 2699v4 2.2 GHz processors. Very similar speedup behavior has been
observed on the compute machine with Intel® Xeon® 2667v4 3.2 GHz CPUs (results not

32

plotted). To ensure equal load distribution per core, all L2 tests were done with 3,125
MAC flows per 10GbE port, and all IPv4 tests were done with 62,500 IPv4 flows per 10
GbE port. Resulting highest scale tested with 16 10GbE ports included 50,000 MAC
flows and 1,000,000 IPv4 flows respectively.

Figure 14. Packet throughput speedup with Multithreading and Multi-core.

All benchmarked NF applications demonstrate close to perfect linear multi-core scaling.
Significant degradation is only observed for DPDK-Testpmd and DPDK-L3Fwd, and
this is due to reaching the hardware limit of packet throughput per NIC (35.8 Mpps).

20

40

60

80

100

120

140

160

180

0 1 2 3 4

DPDK-Testpmd	L2	looping - Pkt	Throughput	 Rate	Speedup

noHT	perfect

noHT	measured

HT	perfect

HT	measured

[Mpps]

[No.	of cores]

Eight	10GEports	per	core:
1 core	=>	8 ports,	2	NICs
2 core	=>	16 ports,	4	NICs
3	core	=>	20*ports,	5	NICs
4	core	=>	20*	ports,	5	NICs
*	NIC	pkts/sec	limit	reached

-17%

-3%Degradation
from perfect

-0%

-1%

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

0 1 2 3 4 5 6 7 8

DPDK-L3Fwd	IPv4	forwarding - Pkt	Throughput	 Rate	Speedup

noHT	perfect

noHT	measured

HT	perfect

HT	measured

[Mpps]

[No.	of cores]

Four	10GEports	per	core:
1 core	=>	4 ports,	1	NIC
2 core	=>	8 ports,	2	NICs
3	core	=>	12 ports,	3	NICs
4	core	=>	16 ports,	4	NICs
8	core	=>	16*ports,	4	NICs
*	NIC	pkts/sec	limit	reached

-

Degradation
from perfect

-46%

-25%
-3%

-2%

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8

VPP	L2	Cross-connect	- Pkt	Throughput	 Rate	Speedup

noHT	perfect

noHT	measured

HT	perfect

HT	measured

[Mpps]

[No.	of cores]

Two	10GEports	per	core:
1 core	=>	2 ports,	1	NIC
2 core	=>	4 ports,	1	NIC
3	core	=>	6 ports,	2	NICs
4	core	=>	8 ports,	2	NICs
8	core	=>	16 ports,	4	NICs

Degradation
from perfect

-5%

-4%

-2%

-5%

0

20

40

60

80

0 1 2 3 4 5 6 7 8

VPP	L2	Switching	- Pkt	Throughput	 Rate	Speedup

noHT	perfect

noHT	measured

HT	perfect

HT	measured

[Mpps]

[No.	of cores]

Two	10GEports	per	core:
1 core	=>	2 ports,	1NIC
2 core	=>	4 ports,	1	NIC
3	core	=>	6 ports,	2	NICs
4	core	=>	8 ports,	2	NICs
8	core	=>	16 ports,	4	NICs

Degradation
from perfect

-9%

-6%

-4%

-1%

0

20

40

60

0 1 2 3 4 5 6 7 8

OVS-DPDK	L2	Cross-connect	- Pkt	Throughput	 Rate	Speedup

noHT	perfect

noHT	measured

HT	perfect

HT	measured

[Mpps]

[No.	of cores]

Two	10GEports	per	core:
1 core	=>	2 ports,	1	NIC
2 core	=>	4 ports,	1	NIC
3	core	=>	6 ports,	2	NICs
4	core	=>	8 ports,	2	NICs
8	core	=>	16 ports,	4	NICs

Degradation
from perfect -13%

-14%

-11%

-2%

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

VPP	IPv4	Routing	- Pkt	Throughput	 Rate	Speedup

noHT	perfect

noHT	measured

HT	perfect

HT	measured

[Mpps]

[No.	of cores]

Two	10GEports	per	core:
1 core	=>	2 ports,	1	NIC
2 core	=>	4 ports,	1	NIC
3	core	=>	6 ports,	2	NICs
4	core	=>	8 ports,	2	NICs
8	core	=>	16 ports,	4	NICs

Degradation
from perfect

-7%

-9%

-3%

-2%

33

When operating within the packet throughput limits per NIC (35.8 Mpps) and per 10GbE
port (14.44 Mpps), the performance degradation vs. perfect in tests up to 8 cores, stays
well within the -10%, with the exception of OVS-DPDK where it goes up to -14%.

4.3.4 Further	Analysis	

Further analysis of performance test results and associated collected hardware
performance counters data require deeper understanding of modern processor CPU
micro-architecture and a well-defined interpretation approach for analyzing underlying
compute resource utilization and hotspots limiting program execution performance.

Intel® Top-down Microarchitecture Analysis Method (TMAM) is well suited to address
this for modern Intel processors. In short, “TMAM is a practical method to quickly
identify true bottlenecks in out-of-order processors including the Intel® Xeon®. The
developed method uses designated performance counters in a structured hierarchical
approach to quickly and correctly identify dominant performance bottlenecks.” TMAM
analysis has been successfully used for CPU performance analysis of various types of
workloads and equally applies for use with NF applications. The methodology is
extensively documented in Intel® Optimization Manual13 and a number of published
papers14. The method is adopted by multiple tools including Intel® VTune and Linux
open-source PMU-tools15, helping developers adopt this approach without going through
intricacies of the performance monitoring architecture and performance events.

Section 6 Compute Performance Analysis using Intel TMAM contains a primer on
TMAM and how it applies to NF applications, followed by sample PMU-tools based
measurements for tested NF applications and data analysis.

4.4 Memory	Bandwidth	Consumption	

Runtime usage of system memory bandwidth is another important high-level efficiency
metric that need to be analyzed in the context of implemented packet operations. The
memory bandwidth utilization does not only indicate the headroom left on the memory
channels, but also provides an important metric of per packet memory accesses.
Table 6 shows Memory consumed in high network bandwidth scenario i.e. workloads
running with 4Cores/8Threads.

13 “Intel Optimization Manual” – Intel® 64 and IA-32 architectures optimization
reference manual.
14 Technion 2015 presentation on TMAM , Software Optimizations Become Simple with
Top-Down Analysis Methodology (TMAM) on Intel® Microarchitecture Code Name
Skylake, Ahmad Yasin. Intel Developer Forum, IDF 2015. [Recording].
15 Linux PMU-tools, https://github.com/andikleen/pmu-tools.

34

Table 6. Memory bandwidth consumption for tested NF applications.

In most cases Memory bandwidth is close to 0 MB/s due to effective use of Intel® DDIO
(Direct Data IO) feature. More detailed description of DDIO technology and its
applicability to NF applications is provided in Section 8.3 Intel® Direct Data IO
Technology (DDIO).
Furthermore, Section 7 Memory Performance Analysis is dedicated to memory
performance, including NF test measurements with Intel PCM pcm-memory.x tool and
results analysis.

4.5 I/O	Bandwidth	Consumption	

Input/Output plays a significant role in NF applications’ performance. Understanding and
monitoring I/O behavior in the architecture is thus extremely important. Table 7 shows
the average PCIe I/O bandwidth consumption for benchmarked NF applications.

Table 7. PCIe I/O bandwidth consumption for tested NF applications with 64B Ethernet

frames.

For the test scenario with a fixed 64B Ethernet frame size, PCIe bandwidth is
proportional to the packet rate.
Number of PCIe read transactions per packet varies depending on the descriptor size the
software chooses for the Ethernet NIC cards. For all cases except OVS-DPDK, the packet
descriptor size is 16B, resulting in 32B of total overhead per 64B packet (16B descriptor
for Ethernet Transmit, and 16B for Ethernet Receive). This results into 1.5x of PCIe read
transactions per packet. OVS-DPDK software uses extended size descriptors (32B) for
Ethernet Receive, resulting into higher PCIe read/packet rate ratio.
PCIe write transactions/packet ratio depends both on the descriptor size as well as the
descriptor write back policy chosen by the software. In some of the tested cases, Ethernet
cards are programmed to write back only 1 Transmit descriptor per every 16th packet,

4C/8T 4C/4T

Benchmarked	Workload Throughput	[Mpps] Memory	Bandwdith	[MB/s]

Dedicated	4	physical	cores	with	HyperThreading	enabled,	2	threads	per	physical	core,	8	threads	in	total	=>	4c8t
DPDK-Testpmd	L2	looping 148.3 18
DPDK-L3Fwd	IPv4	forwarding 132.2 44
VPP	L2	Cross-connect 72.3 23
VPP	L2	Switching 41.0 23
OVS-DPDK	L2	Cross-connect 31.2 40
VPP	IPv4	Routing 48.0 1484

Benchmarked	Workload
Throughput	

[Mpps]

PCIe	Write		

Bandwidth	

[MB/s]

PCIe	Read	

Bandwidth	

[MB/s]

PCIe	Write	

#Transactions/	

Packet

PCIe	Read	

#Transactions/	

Packet

Dedicated	4	physical	cores	with	HyperThreading	enabled,	2	threads	per	physical	core,	8	threads	in	total	=>	4c8t

DPDK-Testpmd	L2	looping 148.3 13,397 14,592 1.41 1.54
DPDK-L3Fwd	IPv4	forwarding 132.2 11,844 12,798 1.40 1.51
VPP	L2	Cross-connect 72.3 6,674 6,971 1.44 1.51
VPP	L2	Switching 41.0 4,329 3,952 1.65 1.51
OVS-DPDK	L2	Cross-connect 31.2 3,651 3,559 1.83 1.78
VPP	IPv4	Routing 48.0 4,805 4,619 1.56 1.50

35

with the Receive descriptors being the same as for PCIe read transactions. This results in
lower PCIe writes/packet ratio of [1B(rx_descriptor) +16B (tx_descriptor) +64B
(packet)]/64B(packet_size) =~1.265. However, due to non-coalesced descriptor write, the
counters round up the descriptor size to 64B, resulting in over reporting PCIe write
bandwidth, compared to reality.
Section 8 PCIe Performance Analysis is dedicated to PCIe I/O performance, including
usage of Intel PCM pcm-pcie.x monitoring tool, NF test measurements and data analysis.

4.6 Inter-Socket	Transactions	

The last part of compute system architecture to look at is the CPU core to core
communication involving inter-socket transactions for Intel® Xeon® two- and four-
socket server configurations. Intel Architecture is CPU cache coherent architecture,
meaning that when CPU or I/O accesses a cache-line, the architecture ensures that it gets
the most recent version of the cache-line. It also ensures that only one modified data copy
exists in the system, whether it is in one or more level of core caches of either socket or
system memory. Such operation involves snoop transactions on the Intel® QuickPath
Interconnect (QPI), an interconnect link between the two CPU sockets. Understanding
these transactions is important for achieving the peak performance out of a multi-socket
system.
All benchmarking of NF applications reported in this paper has been performed with NF
application threads pinned to processor socket0, excluding any inter-socket transactions
and QPI involvement in program execution. Hence no measurement data is provided in
this version of the paper.
Focused analysis of inter-socket transactions onto the NF application performance is
subject to further study.

36

5 Intel	x86_64	–	Performance	Telemetry	and	Tools	
Systematic, focused and repeatable performance analysis of any application requires
availability of suitable and reliable performance telemetry points (counters) with
associated measurements and monitoring tools. There are several commercial tools, e.g.
Intel VTuneTM, and open source tools e.g. Linux perf, Linux pmu-tools, Intel PCM.
This section provides overview of the open source tools. First though is a brief
description of the underlying hardware based performance telemetry architecture used by
those tools, to aid understanding.

5.1 Telemetry	Points	in	Intel®	Xeon®	E5	Processor	Architecture	

For any Software applications to take advantage of CPU microarchitectures, one needs to
know how the application is utilizing available hardware resources. One way to obtain
this knowledge is by using the on-chip Performance Monitoring Units (PMUs). PMUs
are dedicated pieces of logic within a CPU core that count specific Hardware events as
they occur in the system. Examples of these events include Cache Misses and Branch
Mispredictions. These events can be observed, counted and combined to create useful
high-level metrics such as cycles-per-instruction (CPI) or its reciprocal equivalent
instructions-per-cycle (IPC).

Figure 15 below shows the performance counters available within the Intel Xeon E5-
2600 v4 series processor micro-architecture.

Figure 15. High Level view of Intel® Xen® E5 v4 Family processor Architecture.

In traditional applications, most of the attention goes towards performance counters in
CPU cores. However, for system level performance analysis of I/O centric applications
like NFV, in addition to CPU cores equally important are also uncore, I/O, and Processor

C-BOX	PMON

MEM	PMON

QPI	PMON

CORE	PMON

37

interconnect counters. Cumulatively, there are more than one thousand performance
monitoring events that can help understand microarchitecture activities while running an
application. They are grouped into the following categories:
1. CORE PMON - Core specific events monitored through Core performance counters.

Examples include number of instructions executed, TLB misses, cache misses at
various cache levels, branch predictions.

2. C-BOX PMON - C-Box performance monitoring events used to track LLC access
rates, LLC hit/miss rates, LLC eviction and fill rates, and to detect evidence of back
pressure on the LLC pipelines. In addition, the C-Box has performance monitoring
events for tracking MESI state transitions that occur as a result of data sharing across
sockets in a multi-socket system.

3. MEM PMON – Memory controller monitoring counters. There are four counters in
the E5-2600 E5 v4 Family processor architecture which monitor activities at memory
controller.

4. QPI PMON - QPI counters monitor activities at QPI links, the interconnect link
between the processors.

Some of the Core counters are enabled only when Hyper-Threading (HT) is turned off. It
is recommended to turn HT off in the BIOS setting when one wants to do deep dive
analysis with all the performance monitoring infrastructure, as presented in this paper.

5.2 Performance	Monitoring	Tools	

Number of tools and code libraries enables monitoring available performance counters
and enabling their analysis. Some utilities like Intel VTuneTM and Linux perf top can even
point to hot spots in the source code that cause high count of selected event.

Here is a brief description of applicability of three open-source tools that have been used
in this paper for performance measurements and analysis:

• Linux Perf – a generic Linux kernel tool. It supports multiple generations of x86 and
many other CPU architectures. Perf incorporates basic performance events for each
architecture. Perf tool can also be used to conduct performance hot-spot analysis at
source code level.

• PMU-Tools – a set of open-source utilities built upon Linux Perf, providing rich
analysis tools to a user. PMU_Tools supports download of an enhanced set of
performance monitoring events for a particular architecture using
(event_download.py) on top of what is available with Linux Perf. Additionally, PMU-
Tools includes powerful performance analysis tool based on the Top-down Micro-
Architecture Method (TMAM), as described in this paper.

• PCM tool chain – PCM is another open-source tool for monitoring various
performance counters. PCM consists of a set of utilities, each one focusing on
specific parts of architecture including Core, Cache hierarchy, Memory, PCIe,
NUMA. It is easy to use and great for showing high-level statistics. One of the main
advantages of PCM tools is that one can observe variety of CPU core, CPU uncore,

38

and memory events in real time. For example, one observe in real time how IPC, LLC
miss, memory and PCIe consumption vary with change in network loads.

Table 8 below shows mapping of open source tools to specific performance analysis area.

Analysis Area Performance Tools

CPU Cores pmu-tools top-down analysis.

CPU cache Hierarchy pmu-tools, pcm.x.

Memory bandwidth pcm-memory.x, pmu-tools.

PCIe bandwidth pcm-pcie.x

Inter-Socket transactions pcm-numa.x, pmu-tools.
Table 8. Mapping of performance tools to CPU architecture analysis area.

6 Compute	Performance	Analysis	using	Intel	TMAM	

6.1 TMAM	Overview	

Analyzing and optimizing applications' performance has become increasingly hard due to
continuously increasing processor microarchitecture complexities, Software applications
diversity and huge volume of measurement data produced by performance tools.

Intel Top-down Microarchitecture Analysis Methodology16 (TMAM) has been developed
and successfully applied to address this problem. TMAM provides fast and accurate
performance analysis of variety of workloads by employing a structured drill-down
approach to investigate bottlenecks in out-of-order processors, while running steady
workloads. The hierarchical top-down approach saves time, helps users to quickly
identify bottlenecks and to focus on the most important areas for performance
optimization. PMU-tools17 have been developed in open-source to help conduct
performance analysis using TMAM approach.

Before diving into TMAM performance analysis, it is worthwhile to get familiar with
further details of Intel® Xeon® E5 v4 Family processor micro-architecture. Section 3.4
Compute Resources Usage has already described the entire compute system and its block
diagram in Figure 5 featuring processor cores, uncore, I/O, and interconnect system
blocks in Intel Xeon processor architecture. Zooming into the processor core itself,
Figure 16 below illustrates the functional units present within a Core, with the CPU core
pipeline divided conceptually into two halves, the Frontend and the Backend. The
Frontend part implements an in-order code execution and is responsible for fetching the
program code represented in architectural instructions and decoding them into one or
more low-level Hardware operations referred to as micro-operations (µOps). The µOps

16 A Top-Down Method for Performance Analysis and Counters Architecture, Ahmad
Yasin. In IEEE International Symposium on Performance Analysis of Systems and
Software, ISPASS 2014, https://sites.google.com/site/analysismethods/yasin-pubs.
17 PMU tools: https://github.com/andikleen/pmu-tools.

39

are then fed to the Backend in a process called allocation. Once allocated, the Backend
(implementing an out-of-order execution) is responsible for monitoring when µOp’s data
operands are available and executing the µOps in available execution unit. The
completion of a µOp’s execution is called Retirement, and happens when results of the
µOp’s execution are committed to the architectural state of the processor, written to CPU
registers or written back to memory. Usually most µOps pass completely through the
pipeline and retire, but sometimes speculatively fetched µOps may get cancelled before
retirement – like in the case of Bad Speculation with mispredicted branches.

Figure 16. Block Diagram of Intel® Xen® E5 v4 Family processor Core Architecture.

Modern processor microarchitectures support over a thousand of events through their
Performance Monitoring Units (PMUs). However, it is frequently non-obvious to
determine which events are useful in detecting and fixing specific performance issues. It
often requires an in-depth knowledge of both the microarchitecture design and PMU
specifications to obtain useful information from raw event data. That is where the
predefined events and metrics combined with the top-down characterization method help
enormously, enabling conversion of the measured performance data into actionable
information.
From the top-down perspective, one can think of the architecture as consisting of two
main high-level functional blocks:
1) Frontend – responsible for fetching the program code represented in CPU

architecture instructions and decoding them into one or more low-level hardware
operations called µOps.

Front	End

Back	End

40

2) Backend – responsible for scheduling µOps, µOps execution and their retiring per
original program’s order.

The first analysis point is whether the µOps are issued to the execution pipeline. If they
are not issued, either the architecture Frontend is the bottleneck or the Backend is the
stalling party. On the other hand, if µOps are issued then EITHER most of them are
executed, completed and can be Retired OR some of them are executed, but not
completed due to Bad Speculation and cannot get retired. Figure 17 shows a flow
diagram for this simple analysis process.

Figure 17. Logical steps in TMAM.

The first level of TMAM break-up helps a user to focus on one or two specific domains,
which could influence the performance the most and then drill down into the second level
of hierarchy. The process is repeated to the deeper levels until performance issue is
found. Figure 18 shows the first four levels of TMAM hierarchy for Intel® Xeon® E5 v4
Family processor microarchitecture.

Micro-Ops	Issued?

Allocation	Stall? Micro-Ops	ever	Retire?

Frontend	Bound Backend	Bound Bad	Speculation Retiring

NO

NO

NO

YES

YESYES

41

Figure 18. TMAM Hierarchy

For further detail on TMAM analysis please refer to Intel Developer Zone resources18.
TMAM data collection and analysis can be carried out using Intel VTuneTM or PMU-
tools. Benchmark tests detailed in this paper were conducted using EMON tool (Part of
Intel VTuneTM) for both data collection and the analysis, mainly because of availability of
the test automation framework in the testing environment. Exactly the same data
collection and analysis is available and can be carried out using PMU-tools. Associated
PMU-tools command references for each of the analysis steps have been provided in
Section 15. Appendix: Deep-dive TMAM Analysis.

TMAM performance analysis has been applied to the NF workloads described in this
paper. Table 9 shows TMAM Level-1 measurements for the benchmarked CoreMark and
NF workloads running under load on Intel® Xeon® E5-2699v4 processor, with data
plane threads utilizing single processor core, with processor running in no-Hyper-
Threading (noHT) and then in Hyper-Threading (HT) mode.

18 Intel Developer Zone, Tuning Applications Using a Top-down Microarchitecture
Analysis Method, https://software.intel.com/en-us/top-down-microarchitecture-analysis-
method-win.

Pipeline	Slots

Not	Stalled Stalled

Retiring Bad	Speculation Frontend	Bound Backend	Bound

Fetch	
Latency

Fetch	
B/W

IT
LB
	M

is
s

IC
ac
h
e
M
is
s

B
ra
ch
	R
es
te
er
s

Base
MS	
ROM

FP
	A
ri
th

O
th
er

Sc
al
ar

V
ec
to
r

Fe
tc
h
	S
rc
1

Fe
tc
h
	S
rc
2

Core	
Bound

Memory	Bound

L1
		B
o
u
n
d

L2
		B
o
u
n
d

L3
		B
o
u
n
d

St
o
re
	B
o
u
n
d

Ex
te
rn
al
	

M
em

o
ry
		B
o
u
n
d

M
em

	L
at
en

cy
M
em

	B
/W

Branch	
Mispredict

Machine	
Clear

D
iv
id
er

Ex
ec
u
ti
o
n
	P
o
rt
s	

U
ti
liz
at
io
n

0	
P
o
rt

1	
o
r	
2	
P
o
rt
s

3+
	P
o
rt
s

Level-1

Level-2

Level-3

Level-4

42

Table 9. TMAM Level-1 Analysis.

All listed percentage-based Level 1 TMAM performance metrics add up to 100% (per
workload type and per noHT/HT test run), representing a ratio of all pipeline slots
executed over the measurement time.

Initial look at these results shows some interesting patterns and differences across the
tested workloads.

Starting with %Retiring (ratio of pipeline slots the µOps are successfully executed and
retired, higher value is better), the highest scores at 66.4..67.7% (HT mode) are achieved
by CoreMark and surprisingly VPP IPv4 Routing and VPP L2 MAC Switching
indicating that these are extremely efficient and optimized code implementations, which
are successfully hiding cache and memory latencies while processing packets.
Following with %Bad_Speculation (ratio of pipeline slots pre-fetching and executing
non-useful operations, lower value is better), the clear winner is VPP (all configurations)
and DPDK-L3Fwd, scoring values <1%. This is an extremely low value indicating that
for these applications the core is speculatively executing the branches correctly most of
the time, spending 99% of cycles doing useful work. Besides efficient CPU branch
predictor architecture implementation, several other factors, such as the efficient code
compilation favorable to branch predictor (e.g. using compiler hints likely()/unlikely()),
and small and repeated code execution footprint play a role to make this metric small.
Measurements of %Frontend_Bound Stalls (ratio of pipeline slots the Frontend fails to
supply the pipeline at full capacity when there were no Backend bound stalls, lower value
is better) and %Backend_Bound Stalls (ratio of pipeline slots the µOps are not delivered
from µOp queue, denoted as IDQ in Figure 16, to the pipeline due to Backend being out
of resources to accept them, lower value is better) clearly show different balance between
both metrics for noHT and HT modes. In noHT case %Backend_Bound stalls dominate
for all workloads, indicating the Frontend is not a pinch point. In Hyper-Thread mode this
changes as each HT core tries to dispatch instruction to maximize the use of Backend
resources, while also stressing the shared Frontend pipe line. This results in the aggregate
contribution from Backend related stalls decreasing, while Frontend becoming
increasingly a bottleneck.

Following sections delve into further analysis of the first two levels of TMAM
measurements, describing each category in more detail and providing related
measurement and analysis of benchmarked NF workloads.

TMAM	L1
Core	Pipeline	Slots

TMAM	Level-1	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT noHT HT
CoreMark 53.6 67.7 3.2 2.4 6.8 20.1 36.3 9.8
DPDK-Testpmd	L2	Loop 34.1 47.0 3.8 4.7 1.1 14.8 61.1 33.4
DPDK-L3Fwd	IPv4	Forwarding 36.9 51.8 0.6 0.8 0.9 22.0 61.6 25.4
VPP	L2	Patch	Cross-Connect 47.6 57.8 1.7 0.6 3.4 16.9 47.3 24.7
VPP	L2	MAC	Switching 52.4 66.4 1.1 0.4 2.7 15.9 43.8 17.3
OVS-DPDK	L2	Cross-Connect 44.6 57.7 7.4 3.9 10.9 26.4 37.0 12.0
VPP	IPv4	Routing 57.4 67.4 1.1 0.8 2.5 14.8 38.9 17.0

StalledNot	Stalled

%Frontend_Bound %Backend_Bound%Bad_	
Speculation

%Retiring

43

6.2 %Retiring	

The first category for TMAM top level analysis is %Retiring. This metric is the measure
of the number of µOps successfully retired and hence represents the execution efficiency.
The Retiring ratio is calculated as follows:

%𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔 =
𝑈𝑂𝑃𝑆_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝑅𝐸𝑇𝐼𝑅𝐸_𝑆𝐿𝑂𝑇𝑆

4 ∗ 𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌

Equation 7. TMAM Level-1: %Retiring.

The event UOPS_RETIRED.RETIRE_SLOTS counts the number of retirement slots used
each clock cycle. The theoretical best-case scenario for Intel® Xeon® E5 v4 Family
processor architecture is one with 4 µOps being retired per cycle, one on each slot.
Clearly, this metric should be as high as possible. Since most architecture instructions
map to single µOp, this metric is also indicative of instructions-per-cycle (IPC).

When benchmarks are run with Hyper-Threading, each thread competes for the use of
execution and retirement slots. As a result, increased number of µOps are retired, giving
%Retiring ratio higher than corresponding non-Hyper-Threading cases. This explains
higher values for HT mode reported in Table 9 above.

Higher %Retiring ratio means more µOps are executed and retired per cycle. However,
higher ratio does not necessarily imply that there is no room for further performance
improvement of an application. Further optimization options include using better
algorithms or vectorizing the code (with SSE4, AVX2 instructions), making CPU cores
do the same work with lower number of µOps consuming less CPU clock cycles.
Comparing benchmarked NF workloads, the highest scores at 66.4..67.7% (HT mode)
are achieved by CoreMark and VPP IPv4 Routing and VPP L2 MAC Switching.
Remaining workloads are 10..20% behind. For all workloads using HT improves
%Retiring metric by 17% to 40%.
Note that there is one subtle difference between CoreMark and benchmarked NF
workloads. Whereas the former deals with the same set of data in L1 cache, the NF
workloads continuously access and operate upon the new set of data written and read by
network interface cards. High values of this metric for NF workloads indicate that they
are not penalized by the latency of accessing dynamic data content written/read by
external devices. This is the result of the efficient NF code implementations AND CPU
hardware prefetchers, that when combined help hiding the cache and memory access
latencies resulting in very high number of instructions being retired per clock.

Retiring pipeline slots are broken further into two sub-categories called Base and
Microcode_Sequencer. Table 10 lists TMAM Level-2 drill-down into the %Retiring
measurements for the benchmarked CoreMark and NF workloads.

44

Table 10. TMAM Level-1: %Retiring - breakdown into Level-2 metrics.

Listed Level-2 TMAM metrics add up to their parent Level-1 metric, representing a
further subdivision ratio of all pipeline slots executed over the measurement time.

6.2.1 %Retiring.Base	

%Retiring.Base metric represents ratio of pipeline slots when the CPU core was retiring
regular µOps, the ones that did not originate from the microcode-sequencer. Software
logic could be rewritten to improve this metric and further reduce the instruction count
that require microcode-sequencer. Alternatively, software could also employ other
techniques such as vectorization.
%Retiring.Base ratio is calculated as follows:

%	𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔. 𝐵𝑎𝑠𝑒 = 1		–		 STU.VW_XYZW
XYZW_SWWX[T.\]^

∗ %𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔	=		1	-	%	𝑅𝑒𝑡𝑖𝑟𝑒.𝑀𝑆	

Equation 8. TMAM Level-2: %Retiring.Base.

It is clear that this metric is the dominant factor for the reported benchmarks.

6.2.2 %Retiring.Microcode_Sequencer	

Certain instructions in Intel Architecture are complex and are broken into multiple µOps
using Micro Sequencer logic. Examples of such instructions include CPUID, sine, and
cosine. Such instructions can also potentially slow down the execution. For performance
reasons, software implementation should minimize the use of such instructions.

%	𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔.𝑀𝑆 =
𝐼𝐷𝑄.𝑀𝑆_𝑈𝑂𝑃𝑆

𝑈𝑂𝑃_𝐼𝑆𝑆𝑈𝐸𝐷. 𝐴𝑁𝑌
∗ %𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔

Equation 9. TMAM Level-2: %Retiring.Microcode_Sequencer.

High use of Micro Sequencer is usually an indication of a performance issue. However,
some instructions, such as REP MOVSB (memory string moves), make heavy use MS,
yet work every efficiently. It is evident from the Table 10 above, that use of micro
sequencer logic is insignificant for the benchmarked applications.

Retiring
Core	Pipeline	Slots

TMAM	Level-1&2	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 53.6 67.7 53.6 67.7 0 0
DPDK-Testpmd	L2	Loop 34.1 47.0 34.0 47.0 0.0 0.0
DPDK-L3Fwd	IPv4	Forwarding 36.9 51.8 36.9 51.6 0.1 0.2
VPP	L2	Patch	Cross-Connect 47.6 57.8 47.2 57.4 0.3 0.4
VPP	L2	MAC	Switching 52.4 66.4 52.1 65.7 0.2 0.7
OVS-DPDK	L2	Cross-Connect 44.6 57.7 44.3 57.4 0.4 0.3
VPP	IPv4	Routing 57.4 67.4 57.2 67.1 0.2 0.3

Not	Stalled

%Retiring %..Base %..Microcode_	
Sequencer

45

6.3 %Bad_Speculation
The second top-level category in TMAM, %Bad_Speculation, quantifies a scenario when
the pipeline is busy fetching and executing non-useful operations.
Intel Xeon architecture employs a sophisticated speculative branch prediction logic to
attain high execution efficiency. It is very likely that multiple instructions are being
speculatively executed ahead of making a decision on a conditional branch instruction. If
the branch prediction is proven to be incorrect at the execution of the branch instruction,
instructions that were speculatively executed never retire and the execution slots they
used are essentially wasted. Besides, such mis-predictions also cause pipeline flushes
consuming additional cycles, while recovering to the correct execution flow. The
%Bad_Speculation metric accounts for both of these effects. Clearly, one would like to
have %Bad_Speculation number as low as possible.

Overall cycles wasted are captured as:
%	𝐵𝑎𝑑_𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	

= 	
((𝑈𝑂𝑃𝑆_𝐼𝑆𝑆𝑈𝐸𝐷. 𝐴𝑁𝑌	 − 	𝑈𝑂𝑃𝑆_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝑅𝐸𝑇𝐼𝑅𝐸_𝑆𝐿𝑂𝑇𝑆) 	+ 	4 ∗ 𝐼𝑁𝑇_𝑀𝐼𝑆𝐶. 𝑅𝐸𝐶𝑂𝑉𝐸𝑅𝑌_𝐶𝑌𝐶𝐿𝐸𝑆_𝐴𝑁𝑌)

4 ∗ 	𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌

Equation 10. TMAM Level-1: %Bad Speculations.

Table 11 below lists TMAM Level-2 drill-down into the %Bad_Speculation
measurements for the benchmarked CoreMark and NF workloads.

Table 11. TMAM Level-2: %Bad_Speculation - breakdown into Level-2 metrics.

Based on data listed in Table 11, benchmarked workloads show very low ratio for this
category, indicating only a small amount of cycles are wasted due to bad speculations. It
implies that the most branch instructions are predicted correctly by the underlying
architecture. Also, %Machine_Clears metric is less dominant than
%Branch_Mispredicts.

Among tested workloads, VPP scores consistently values <1% for all tested
configurations. Same for DPDK-L3Fwd. CoreMark, OVS-DPDK, DPDK-Testpmd
utilize pre-fetching less effectively, but still score fairly low values 2.4..4.7%. HT
improves this metric in all cases, but DPDK-Testpmd.

Bad_Speculation
Core	Pipeline	Slots

TMAM	Level-1&2	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 3.2 2.4 3.1 2.3 0.1 0.1
DPDK-Testpmd	L2	Loop 3.8 4.7 3.7 4.7 0.1 0.1
DPDK-L3Fwd	IPv4	Forwarding 0.6 0.8 0.4 0.7 0.2 0.1
VPP	L2	Patch	Cross-Connect 1.7 0.6 0.9 0.4 0.8 0.2
VPP	L2	MAC	Switching 1.1 0.4 0.8 0.3 0.4 0.1
OVS-DPDK	L2	Cross-Connect 7.4 3.9 7.1 3.9 0.3 0.0
VPP	IPv4	Routing 1.1 0.8 0.7 0.6 0.5 0.2

Not	Stalled

%Bad_	
Speculation

%..Branch_	
Mispredicts

%..Machine_	
Clears

46

TMAM methodology classifies the %Bad_Speculation slots into the two Level-2
performance metrics: %Branch_Mispredicts and %Machine_Clears.

6.3.1 %Bad_Speculation.Branch_Mispredicts
This metric tells about the percentage of wasted cycles due to Branch Mispredicts events.
Understanding this counter helps make the program control flow friendlier to the branch
predictor.
%	𝐵𝑟𝑎𝑛𝑐ℎ_𝑀𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠

= 	
𝐵𝑅_𝑀𝐼𝑆𝑃_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝐴𝐿𝐿_𝐵𝑅𝐴𝑁𝐶𝐻𝐸𝑆_𝑃𝑆

	𝐵𝑅_𝑀𝐼𝑆𝑃_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝐴𝐿𝐿_𝐵𝑅𝐴𝑁𝐶𝐻𝐸𝑆_𝑃𝑆 + 	𝑀𝐴𝐶𝐻𝐼𝑁𝐸_𝐶𝐿𝐸𝐴𝑅𝑆. 𝐶𝑂𝑈𝑁𝑇
∗ (%𝐵𝑎𝑑	𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛)	

Equation 11. TMAM Level-2: %Bad_Speculation.Branch_Mispredicts.

The event BR_MISP_RETIRED.ALL_BRANCHES_PS counts the number of branches that are
incorrectly predicted as the branch target.

All tested workloads exhibit low values for %Branch_Mispredicts, well below 8%.
If above %Branch_Mispredicts ratios is more than 5%, hot-spot profiling for
%Bad_Speculation and above two events is recommended. The tools such as Linux Perf
or VTuneTM can help rearrange the logic to help minimize these events.

6.3.2 %Bad_Speculation.Machine_Clears
The event MACHINE_CLEARS.COUNT counts the number of times the pipeline is cleared
due to various Machine Clear events. The prominent causes of Machine Clear event
include memory ordering conflict and self-modifying code. For example, an ordering
conflict can occur when a snoop request is issued and the machine is uncertain if memory
ordering will be preserved as another core is in the process of modifying the same data.

%	𝑀𝑎𝑐ℎ𝑖𝑛𝑒_𝐶𝑙𝑒𝑎𝑟𝑠 = 	
𝑀𝐴𝐶𝐻𝐼𝑁𝐸_𝐶𝐿𝐸𝐴𝑅𝑆. 𝐶𝑂𝑈𝑁𝑇

	𝐵𝑅_𝑀𝐼𝑆𝑃_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝐴𝐿𝐿_𝐵𝑅𝐴𝑁𝐶𝐻𝐸𝑆_𝑃𝑆 + 	𝑀𝐴𝐶𝐻𝐼𝑁𝐸_𝐶𝐿𝐸𝐴𝑅𝑆. 𝐶𝑂𝑈𝑁𝑇
∗ (%𝐵𝑎𝑑	𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛)	

Equation 12. TMAM Level-2: %Bad_Speculation.Machine_Clears.

Since the benchmarked NF workloads employ run-to-completion packet processing, the
participating cores are not transferring data between themselves. Hence, ordering conflict
is not expected for any of the workloads. Furthermore, these workloads do not use self-
modifying code. These two main factors make %Machine_Clears value low and optimal.

6.4 %Frontend_Bound	Stalls	

The Frontend of the pipeline on recent Intel Xeon E5 processor microarchitectures can
allocate up to four µOps per cycle, while the Backend can retire four µOps per cycle.
%Frontend bound stalls denote the ratio of pipeline slots the Frontend fails to supply the
execution pipeline at full capacity and delivers less than 4 µOps per cycle, while the
Backend is still requesting µOps. Refer to Section 6.1 TMAM Overview and Figure 16 for
details on the Frontend and Backend functionality.

The Frontend_Bound category covers also several other types of pipeline stalls. While it
is less common for the Frontend portion of the pipelines to become the application's
bottleneck, there are some cases where the Frontend can contribute in a significant
manner to machine stalls.

%Frontend_Bound stalls metric is calculated using the following formula:

47

%	𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑	 = 	
𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑂𝑅𝐸

4 ∗ 𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

Equation 13. TMAM Level-1: %Frontend_Bound.

The IDQ_UOPS_NOT_DELIVERED.CORE counts the number of issue pipeline slots at every
core clock when no µOp was delivered from the Frontend to the Backend while there is
no Backend stall. Higher ratio means that Frontend of the pipeline is delivering less than
4 uops when Backend is demanding µOps, but cannot get enough. In all of these cases
execution engines are starved due to Frontend stalls.
In TMAM hierarchical approach, %Frontend_Bound can be divided further into two
Level-2 metrics – %Frontend_Latency and %Frontend_Bandwidth, as described in the
next two sections.

Table 12 below shows the TMAM Level-2 drill-down into the %Frontend_Bound Stalls
measurements for the benchmarked CoreMark and NF workloads.

Table 12. TMAM Level-1: %Frontend_Bound Stalls - breakdown into Level-2 metrics.

Table 12 reveals the benchmarked CoreMark and NF workloads are not Frontend bound
for non-Hyper-Threading cases. In other words, Frontend is always ready to deliver µOps
when the Backend asks for them. When tests are carried out with Hyper-Threading, the
execution engine demands increased number of µOps pertaining to the software running
on both hyper-threads of a core. Increased pressure on the Frontend to provide more
µOps to the Backend results in higher number of Frontend stalls.

For all benchmarks, %Frontend metric is less than 11% for non-HT mode and less than
26% for HT mode. For well optimized workloads Frontend bound stalls are expected to
be below 30%, and optimizing it further down is unlikely to yield any substantial
performance improvements. All benchmarked applications fall into this category with
VPP IPv4 Routing and DPDK-Testpmd L2 Loop scoring values <15%.

Front-End
Core	Pipeline	Slots

TMAM	Level-1&2	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 6.8 20.1 1.9 11.5 4.9 8.5
DPDK-Testpmd	L2	Loop 1.1 14.8 0.6 12.3 0.5 2.6
DPDK-L3Fwd	IPv4	Forwarding 0.9 22.0 0.4 16.0 0.4 6.1
VPP	L2	Patch	Cross-Connect 3.4 16.9 1.7 13.7 1.6 3.2
VPP	L2	MAC	Switching 2.7 15.9 1.6 11.7 1.1 4.2
OVS-DPDK	L2	Cross-Connect 10.9 26.4 3.4 16.4 7.5 10.0
VPP	IPv4	Routing 2.5 14.8 1.4 11.8 1.1 2.9

Stalled
%Frontend_	

Bound
%..Frontend_	

Latency
%..Frontend_	
Bandwidth

48

For more information please refer to Section B 5.7 in Intel® 64 and IA-32 Architectures
Optimization Reference Manual19.

6.4.1 %Frontend.Frontend_Latency
This metric indicates how often a CPU core was stalled due to latency issues at the
Frontend of the pipeline. It includes the Frontend stalls caused by Instruction-cache
misses, iTLB20 misses, branch mispredictions, and those resulting from µOps delivery
switching back and forth between decoded I-Cache and legacy decoder. In such cases, the
Frontend delivers no µOps for some number of clocks while Backend was requesting
them.

%	𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐿𝑎𝑡𝑒𝑛𝑐𝑦	 = 	
𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑌𝐶𝐿𝐸𝑆_0_𝑈𝑂𝑃𝑆_𝐷𝐸𝐿𝐼𝑉. 𝐶𝑂𝑅𝐸

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

Equation 14. TMAM Level-2: %Frontend_Bound.Frontend Latency.

The event IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE counts the core
cycles in which no µOp is delivered from the Frontend to the Backend in any of the 4
pipeline slots while there was no Backend stall.
Results in Table 12 above indicate that both DPDK and VPP code has been written in a
way to minimize Instruction Cache and iTLB misses. The respective next level down
TMAM performance event counts confirm these misses are indeed negligible. In addition
as the %Branch_Mispredicts metric is also negligible. This indicates that it is the back
and forth switching between decoded I-Cache and legacy decoder are the main source of
higher Frontend Latency metric values.
6.4.2 %Frontend_Bound.Frontend_Bandwidth

This metric quantifies the fraction of slots a logical core was stalled due to Frontend
bandwidth issues. For example, inefficiencies at the instruction decoders, or code
restrictions for caching in the DSB21 (decoded µOps cache) are categorized under
%Frontend_Bandwidth. In such cases, the Frontend typically delivers non-optimal
amount of µOps to the Backend (i.e. less than four per clock cycle in Intel® Xeon ® E5
v4 Family microarchitecture).
%	𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ	

= 	
(𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑂𝑅𝐸	– 	4 ∗ 𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑌𝐶𝐿𝐸𝑆_0_𝑈𝑂𝑃𝑆_𝐷𝐸𝐿𝐼𝑉. 𝐶𝑂𝑅𝐸)

4 ∗ 	𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

Equation 15. TMAM Level-2: %Frontend_Bound.Frontend Bandwidth.

%Frontend Bandwidth values listed for tested workload in Table 12 are very low and
should not cause any major impact on performance. Optimal code is expected to yield

19 Intel® 64 and IA-32 Architectures Optimization Reference Manual -
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-optimization-manual.html
20 iTLB - Translation Look Aside Buffer for Instructions. This high speed on-chip
SRAM that caches logical to physical address transaction entries for instruction space.
21 DSB - Decoded Stream Buffer, caches a small set of µOps instructions after decoding.

49

values below or around 10%, and all benchmarked workloads meet this criterion. Values
higher than 10% could be a cause of concern and usually call for further investigation and
optimization.

6.5 %Backend_Bound	Stalls	

As noted previously, the Backend can retire up to four µOps per cycle in Intel® Xeon®
E5 processor microarchitecture. The %Backend bound stalls denote the slots where the
µOps are not delivered from µOp queue (IDQ) to the execution pipeline because the
Backend did not have free resources to accept them.

The majority of un-optimized applications have a high value of %Backend Bound.
Resolving Backend issues is often about resolving sources of load and store latencies that
cause µOp retirement to take longer than necessary.

A simple formula for %Backend bound stall is:
%𝐵𝑎𝑐𝑘𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑 = 	1 − (%𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑 + %𝐵𝑎𝑑_𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 + %𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔)

Equation 16. TMAM Level-1: %Backend_Bound.

Table 13 below lists the TMAM Level-2 drill-down into the %Backend_Bound Stalls
measurements for the benchmarked CoreMark and NF workloads.
%Backend_Bound stalls are further divided into two distinct categories: %Memory
Bound and %Core Bound.

Table 13. TMAM Level-1: %Backend_Bound Stalls - breakdown into Level-2 metrics.

At the high-level, the Backend bound measurements show high values for all noHT
cases. CoreMark, which operates on L1 cache only, is among the lowest for this metric,
closely followed by VPP IPv4 routing and OVS-DPDK L2 Cross-Connect. DPDK-
Testmpmd L2 Loop and DPDK-L3Fwd show the highest degree of stalls in noHT case.
When workloads run in HT mode, the metric improves drastically as one thread can
continue to execute in parallel while the sibling one is waiting either for memory systems
and core execution unit to allocate more resources.

6.5.1 %Backend_Bound.Memory_Bound	

%Memory bound metric corresponds to the stalls pertaining to accesses to the memory
system i.e. cache hierarchy, system memory, and store buffers. The misses at various
levels of caches are usually the main contributors to this category. The formula for

Back-End	Bound
Core	Pipeline	Slots
TMAM	Level-1&2	Metrics
Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 36.3 9.8 8.5 3.2 27.8 6.4
DPDK-Testpmd	L2	Loop 61.1 33.4 37.1 19.6 24.0 13.8
DPDK-L3Fwd	IPv4	Forwarding 61.6 25.4 37.5 14.5 24.1 10.9
VPP	L2	Patch	Cross-Connect 47.3 24.7 24.4 14.3 22.9 10.3
VPP	L2	MAC	Switching 43.8 17.3 19.3 8.9 24.6 8.3
OVS-DPDK	L2	Cross-Connect 37.0 12.0 15.2 6.2 21.8 5.7
VPP	IPv4	Routing 38.9 17.0 18.3 8.8 20.6 8.2

%Backend_Bound %..Memory %..Core
Stalled

50

counting %Memory bound is a bit complex, involving a number of conditional
statements, and can be found in PMU-tools scripts bdx_server_rations.py22.

%Memory_Bound stalls can be further drilled down to %L1_Bound, %L2_Bound,
%L3_Bound (Last Level Cache bound), %System_Memory_Bound, and %Store_Bound.

Table 14 below lists further break-down of %Backend_Bound.Memory_Bound Level-2
metric into the Level-3 constituent measurements for the benchmarked CoreMark and NF
workloads.

Table 14. TMAM %Backend_Bound.Memory_Bound - further breakdown statistics.

Note that %L1_Bound, %L2_Bound and %L3_Bound metrics, unlike other described
TMAM metrics, are calculated by taking the ratio of the number of clocks consumed for
accessing L1/L2/L3 caches, System_Memory and Store units) to the core
(unhalted/working) clocks. There is no direct relation between these metrics and
%Backend_Bound.Memory metric, hence the metrics do not add up.
Efficient utilization of CPU core cache hierarchy is extremely important, as it enables
hiding the latency of accessing DRAM memory. Functionality offered by core cache
hierarchy is analogous to fast memory (e.g. SRAM) used in purpose-built network
forwarding processors to deliver high-speed data plane performance for network
applications.

6.5.1.1 %Backend_Bound.Memory_Bound.L1_Bound	

The metric %L1 bound represents the percentage of cycles for which a core is stalled to
access data present in the L1 cache. Normally access to L1 cache has the lowest latency.
However, a core may encounter higher latency in some cases such as a load was blocked
on the older stores, DTLB miss, and so on.

%𝐿1_𝐵𝑜𝑢𝑛𝑑	 = 	
(𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝑀𝐸𝑀_𝐴𝑁𝑌	– 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿1𝐷_𝑀𝐼𝑆𝑆)

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌

Equation 17. TMAM Level-3: Backend_Bound.Memory_Bound.L1_Bound.

The event CYCLE_ACTIVITY.STALLS_MEM_ANY counts the core cycles while
memory subsystem (any level of cache or memory) has an outstanding load.
The event CYCLE_ACTIVITY.STALLS_L1D_MISS counts the core cycles while L1
cache miss demand load is outstanding (data is served from sources other than L1 cache).

22 PMU-tools, bdx_server_rations.py - https://github.com/andikleen/pmu-
tools/blob/master/bdx_server_ratios.py.

Back-End	Memory
Core	Pipeline	Slots

TMAM	Level-2&3	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT noHT HT noHT HT noHT HT
CoreMark 8.5 3.2 14.1 19.1 0 0 0 0.1 0 0.3 0 0
DPDK-Testpmd	L2	Loop 37.1 19.6 5.4 9.1 5.4 6.9 7.9 14.4 0.0 0.0 37.6 22.6
DPDK-L3Fwd	IPv4	Forwarding 37.5 14.5 7.8 10.7 1.8 3.6 12.3 16.5 0.0 0.0 25.9 13.6
VPP	L2	Patch	Cross-Connect 24.4 14.3 4.2 11.5 0.0 0.0 15.7 16.9 0.0 0.0 25.4 19.5
VPP	L2	MAC	Switching 19.3 8.9 3.7 12.0 0.0 0.0 14.6 14.6 0.0 0.0 14.7 9.3
OVS-DPDK	L2	Cross-Connect 15.2 6.2 5.1 12.1 0.3 0.9 10.7 14.9 0.0 0.0 13.0 7.1
VPP	IPv4	Routing 18.3 8.8 3.9 10.9 0.0 0.0 12.6 12.9 0.0 0.0 16.4 10.9

%..Store_	Bound%..System_	
Memory_Bound

Stalled

%..L3_Bound%Backend_	
Bound.Memory

%..L1_Bound %..L2_Bound

51

Note that idle latency (only one outstanding read at a time) for accessing L1 cache is 4 to
5 cycles for E5 Xeon® processor architecture.

6.5.1.2 %Backend_Bound.Memory_Bound.L2_Bound	

The metric %L2 bound denotes percentage of cycles a core stalls while loading data
which was present in L2 cache.

%𝐿2_𝐵𝑜𝑢𝑛𝑑	 = 	
(𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿1𝐷_𝑀𝐼𝑆𝑆	– 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿2𝐷_𝑀𝐼𝑆𝑆)

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌

Equation 18. TMAM Level-3: Backend_Bound.Memory_Bound.L2_Bound.

The event CYCLE_ACTIVITY.STALLS_L2D_MISS counts the core cycles while L2
cache miss demand load is outstanding. Note that idle latency (only one outstanding read
at a time) for accessing L2 cache is 12 cycles for E5 Xeon® processor architecture.

This metric is zero for all CoreMark and all VPP configurations, and close to zero for
all other benchmarked workloads. This implies that either the cores are not accessing data
present in L2 cache, or cores are accessing data residing in L2 cache but they do not
encounter stalls, as hardware and/or software prefetchers hide the L2 cache access
latencies.

6.5.1.3 %Backend_Bound.Memory_Bound.L3_Bound	

The metric %L3_Bound denotes percentage of cycles the cores stall, while loading data
that was present in L3 cache (LLC) or contented with the sibling core.

	𝐿3_𝐻𝑖𝑡_𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	 =
MEM_LOAD_UOPS_RETIRED. L3_HIT

MEM_LOAD_UOPS_RETIRED. L3_HIT + 	7 ∗ MEM_LOAD_UOPS_RETIRED. L3_MISS

%𝐿3_𝐵𝑜𝑢𝑛𝑑	 =
𝐿3_𝐻𝑖𝑡_𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿2𝐷_𝑀𝐼𝑆𝑆	

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌

Equation 19. TMAM Level-3: Backend_Bound.Memory_Bound.L3_Bound.

The event MEM_LOAD_UOPS_RETIRED.L3_HIT counts the Retired load uops with
L3 cache hits as data sources.

The event MEM_LOAD_UOPS_RETIRED.L3_MISS counts the Retired load uops with
L3 cache miss as data sources.

Note that idle latency for accessing LLC is ~40 cycles on E5 Xeon processor
architecture.

Clearly, CoreMark application is not L2, L3 cache and System Memory bound since it
executes from L1 cache and its complete data footprint fits into L1 cache. In contrast, all
NF benchmarked workloads exhibit higher percentage in the %L3 bound metric
compared to %L1, %L2. This indicates that cores spend more cycles while accessing L3
(LLC) cache. As it will be explained later, NF applications, by making effective use the
DDIO technology, read and write packets and descriptors from LLC rather than System
memory due to the effective use of DDIO technology. The stalls encountered while
accessing L3 are reflected in the %L3 bound metric.

52

DDIO technology is described and its applicability discussed later in this paper in Section
8 PCIe Performance Analysis.

6.5.1.4 %Backend_Bound.Memory_Bound.System_Memory	

This metric indicates how often a core was stalled while accessing external memory.
Note that idle latency (measured when a core issues only one outstanding memory read
request at a time) for accessing memory cache is in range of 140+ cycles for E5 Xeon®
processor architecture.

%𝑆𝑦𝑠𝑡𝑒𝑚_𝑀𝑒𝑚𝑜𝑟𝑦_𝐵𝑜𝑢𝑛𝑑	 =
(1 − 	𝐿3_𝐻𝑖𝑡_𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 	∗ 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌 𝑆𝑇𝐴𝐿𝐿_𝐿2𝐷𝑀𝐼𝑆𝑆

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌

Equation 20. TMAM Level-3: Backend_Bound.Memory_Bound.System_Memory.

Owing to effective use of DDIO by the benchmarked NF applications, the metric
%System_Memory Bound is close to zero. The LLC essentially acts as a fast SRAM to
help exchange packets between Ethernet ports and the cores at high rate. It logically
serves the same purpose as the multiple fast SRAMs employed in the purpose-built
network processors or ASICs.

6.5.1.5 %Backend_Bound.Memory.Store_Bound	

The Store bound category indicates the fraction of cycles where store buffers are full. In
out-of-order architecture, the store operations are executed after the retirement of store
instructions. Note that the pressure on store buffers does not necessarily means execution
stalls. However, such saturation of Store buffers may cause low utilization of the
execution ports.

%𝑆𝑡𝑜𝑟𝑒_𝐵𝑜𝑢𝑛𝑑	 =
𝑅𝐸𝑆𝑂𝑈𝑅𝐶𝐸_𝑆𝑇𝐴𝐿𝐿𝑆. 𝑆𝐵

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌

Equation 21. TMAM Level-3: Backend_Bound.Memory_Bound.Store_Bound.

The event RESOURCE_STALLS.SB counts the cycles stalled due to no store buffers
available.
The possible reasons behind store buffers saturations include frequent false sharing of
data between the cores, higher store latency, DTLB misses on stores, store data crossing
cacheline boundary. For DPDK Testpmd L2 loop, DPDK-L3fwd IPv4 Forwarding,
and VPP L2 Patch Cross-Connect workloads, this metric from noHT case is unusually
high (>25%). The exact cause behind this has not been determined.

6.5.2 %Backend_Bound.Core	Bound	

%Core bound category corresponds to the execution starvation or sub-optimal utilization
of execution ports. It represents the pipeline slots fraction where the core is the bottleneck
for non-memory related situations. This metric can be calculated as follows:

%𝐶𝑜𝑟𝑒_𝐵𝑜𝑢𝑛𝑑 = %𝐵𝑎𝑐𝑘𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑 − %𝐵𝑎𝑐𝑘𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑.𝑀𝑒𝑚𝑜𝑟𝑦
Figure 19. TMAM Level-3: %Backend_Bound.Core Bound.

53

Table 15 below lists further break-down of %Backend_Bound.Core bound Level-2 metric
into the Level-3 constituent measurements for the benchmarked CoreMark and NF
workloads.
The metric %Divider denotes the fraction of cycles in which the Divider unit (depicted as
Port0 exec unit in Figure 15) was active executing divide operations. Since none of the
benchmarks are using heavy arithmetic divide functions, the contribution from this metric
is negligible.
The metric %Ports_Utilization represents fraction of cycles where the performance was
limited due to core compute stalls other than divider operations or memory stalls. Higher
value denotes lack of instruction level parallelism. Heavy dependency among the
contiguous instructions hampering parallel execution of instructions in the execution
units would drive high values of this metric. In addition, any code sequence
oversubscribing certain execution unit (other than the divider) would also contribute to
this metric.

Table 15. TMAM Level-2: %Backend Core Bound - further breakdown statistics.

The causes behind higher %Ports_Utilization metric are not easy to pin point. In case of
CoreMark and OVS-DPPK L2 Cross-connect with cores running in noHT mode, it is
likely that higher counts against this metric are caused by the dependent instructions.
Hyper-Threading does help reducing this count due to instruction level with two threads.
It is interesting to note that Hyper-Threading for CoreMark is not improving this metric
as much as other workloads. In this case, it is likely that oversubscribing of some
execution unit is contributing to the core execution stalls. TMAM analysis at deeper
levels could help understand the issue. Common best practice is to investigate
%Ports_Utilization metric further, if it scores values of 25% or higher.
Core bound issues could be mitigated through better code generation through compiler.
For example, compiler optimization flags could avoid sequence of dependent arithmetic
instructions, could avoid divider stalls, and so on. On the other hand, software could be
employing vectorization help mitigate the core stalls.

Backe-End	Core
Core	Pipeline	Slots

TMAM	Level-2&3	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 27.8 6.4 0 0 46.2 36.1
DPDK-Testpmd	L2	Loop 24.0 13.8 0.0 0.0 36.4 21.2
DPDK-L3Fwd	IPv4	Forwarding 24.1 10.9 0.0 0.0 30.7 24.0
VPP	L2	Patch	Cross-Connect 22.9 10.3 0.4 0.5 37.9 24.3
VPP	L2	MAC	Switching 24.6 8.3 0.2 0.2 37.0 25.9
OVS-DPDK	L2	Cross-Connect 21.8 5.7 0.0 0.0 42.0 25.7
VPP	IPv4	Routing 20.6 8.2 0.2 0.3 32.1 24.4

%Backend_	
Bound.Core

%..Divider %..Ports_	
Utilization

Stalled

54

6.6 TMAM	Measurements	–	Conclusions	

TMAM provides a systematic performance characterization of the benchmarked
workloads. Figure 20 below shows the summary of TMAM Level-1 metrics’ distribution
and IPC for all benchmarked applications for both noHT (no Hyper-Threading enabled)
and HT (Hyper-Threading enabled) cases.

Figure 20. TMAM Level-1 Summary.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

10

20

30

40

50

60

70

80

90

100

CoreMark DPDK-Testpmd	
L2	Loop

DPDK-L3Fwd	
IPv4	Forwarding

VPP	L2	Patch	
Cross-Connect

VPP	L2	MAC	
Switching

OVS-DPDK	L2	
Cross-Connect

VPP	 IPv4	
Routing

IP
C	
Va
lu
e

%
	C
on

tr
ib
ut
io
n

TMAM	Level	1	Distribution	(HT)

%Retiring %Bad_	Speculation %Frontend_Bound %Backend_Bound IPC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

10

20

30

40

50

60

70

80

90

100

CoreMark DPDK-Testpmd	
L2	Loop

DPDK-L3Fwd	
IPv4	Forwarding

VPP	L2	Patch	
Cross-Connect

VPP	L2	MAC	
Switching

OVS-DPDK	L2	
Cross-Connect

VPP	 IPv4	
Routing

IP
C	
Va
lu
e

%
	C
on

tr
ib
ut
io
n

TMAM	Level	1	Distribution	(noHT)

%Retiring %Bad_	Speculation %Frontend_Bound %Backend_Bound IPC

55

%Retiring: reflects the ratio of core pipeline slots the µOps are successfully executed
and retired, relative to the maximum possible, higher value is better.

• In noHT mode, two tested workloads have low scores of less than 44%, DPDK-
Testpmd L2 Loop and DPDK-L3Fwd IPv4 Forwarding. Compared to other NF
workloads, they implement minimal packet processing focusing mainly on packet
I/O operations. Packet I/O operations are Backend bound since a CPU core is
mostly waiting for data written by NICs, making %Backend_bound stalls metric
dominating for these two applications.

• In HT mode, the highest scores close to 70% are achieved by CoreMark and
surprisingly VPP IPv4 Routing and VPP L2 MAC Switching. This clearly
indicates not only extremely efficient and disciplined code execution, but also
optimized code implementation, that is successfully hiding cache and memory
latencies while processing packets.

• In general, both out-of-order execution and efficient code implementation play
roles in getting %Retiring metric relatively high. It increases in Hyper-Threading
mode indicating more instructions are being executed and work done per CPU
core clock cycle. IPC (#instr/cycle) closely follows this metric very closely as
expected, with CoreMark and VPP IPv4 Routing scoring highest values, 3.1
and 2.8, respectively.

%Bad_Speculation: represents the ratio of core pipeline slots pre-fetching and executing
non-useful operations, lower value is better.

• This metric is insignificant for all workloads, with lowest values <1% measured
for VPP (all configurations) and DPDK-L3Fwd.

• The efficient branch predictor unit in the Intel® Xeon® E5 v4 Family processor
architecture plays a vital role in keeping this metric at a low value. In addition, the
appropriate use of compiler hints in the VPP and DPDK source code help
generate branch predictor friendly binaries.

%Frontend_Bound: captures the ratio of core pipeline slots the Frontend fails to supply
the pipeline at full capacity, while there are no backend stalls, lower value is better.

• In noHT mode , the metric is relatively low indicating that the Frontend is ready
most of the time to supply µOps when the Backend is ready to accept them.

• In HT mode, the metric increases compared with noHT case, as the number of
instructions being issued increase with HT. The lowest values are measured for
VPP IPv4 Routing and DPDK-Testpmd L2 Loop scoring values <15%. OVS-
DPDK measured >26%. However, the percentage contribution for all tested
applications is still below the threshold of 30% and as such not cause of concern.
In all the cases, the main contributor to this metric is the Frontend latency. The
main cause of Frontend latency is attributed to the wasted cycles due to back and
forth transition between legacy and decoded I-Cache while delivering the µOps.

%Backend_Bound: represents the ratio of core pipeline slots the µOps are not delivered
from µOp queue to the pipeline due to Backend being out of resources to accept them,
lower value is better.

56

• In noHT mode, the metric values are high as all benchmarked workloads
experience stalls caused by the loads from various levels of caches and store
operations, and underuse of execution ports. CoreMark, which operates on L1
cache only, is among the lowest for this metric, closely followed by VPP IPv4
Routing and OVS-DPDK L2 Cross-Connect. DPDK-Testmpmd L2 Loop and
DPDK-L3Fwd IPv4 Forwarding show the highest degree of stalls in noHT
mode.

• In HT mode, the metric values get substantially reduced, due to parallel thread
execution and threads balancing the use of execution resources. In addition due to
pipelining of load requests from both threads, average cache access latency goes
down. CoreMark scores lowest value here, due to its operation only L1 cache. It
is closely followed by OVS-DPDK L2 Cross-connect, VPP IPv4 Routing and
VPP L2 MAC Switching, all scoring <20%.

• This metric is important to understand since it reveals the penalty associated while
accessing various levels of cache hierarchy and system memory, and store
operations. Besides, it captures the possible inefficiency in the executions of
µOps. Higher value of this metric negatively impacts %Retiring metric and hence
the IPC.

• The %System_memory utilization (component %Backend_bound metric) for all
benchmarked workloads is zero, unlike for many other benchmarks and
application workloads. This simply means that all memory references are served
by various levels of caches rather than memory. This is due to the optimal use of
DDIO, heavy use of vectorization, and software pre-fetching that all help hide
cache and memory latencies.

In summary, TMAM analysis provides a good and fairly straightforward performance
measurement and analysis methodology to systematically assess levels of Software
application optimization, and adapts very well to Network Function workloads. In
addition to helping to identify any system bottlenecks across the Software-Hardware
stack running NF workloads, it also allows for a fairly granular performance and
efficiency comparison between those stacks when under network service load.

7 Memory	Performance	Analysis	

After the core compute complex, system memory is the second most important sub
systems in the platform architecture driving an application level performance. For most
dedicated networking and general-purpose architectures, the system memory acts as a
central agent facilitating interactions between cores and I/O devices. For example, even
simple packet routing operation involves at least four interactions with the system
memory: i) NIC writes an incoming packet to system memory, ii) core reads the packet
header from system memory, iii) core modifies and writes it back to memory, and finally,
iv) the NIC reads it from memory for packet transmission. The similar set of operations
are needed for processing NICs’ descriptors. In essence, routing a packet could result into
minimum 5-to-8 operations to system memory. If small packets (64B size) are routed at
rate of 100 Million Packet/s, the routing application could easily consume system
memory bandwidth in access of 5x64x100 Mpps = 32,000 MBytes/s. Even though

57

features like Direct Data IO technology (explained in the next section) alleviate number
of operations to memory, monitoring system memory characteristics is still crucial for
understanding possible stalls encountered by both CPUs and PCIe devices, and tuning the
applications for optimum memory bandwidth usage.

The memory performance characteristics are measured with two metrics – system
memory bandwidth and latency of memory accesses. The following sub sections delve
into these aspects.

7.1 Monitoring	Memory	Bandwidth	using	pcm-memory.x	

The PCM toolchain includes pcm-memory.x utility which provides a holistic view of
ongoing-memory bandwidth usage in real-time of Intel® Xeon® E5 processor series
architecture. The pcm-memory.x utility uses Performance Monitoring Counters
associated with the memory controllers. These counters count all the memory
transactions including the ones originated from CPU Cores and PCIe devices. In addition
they also count many other memory transactions generated automatically by the
architecture, such as memory reads for TLB page walk, RFOs (memory read transactions
for Read For Ownership by core). The memory bandwidth reported by pcm-memory.x is
thus the sum of all the traffic observed at the system memory channels and hence reflects
the true loading on the memory channels.
Figure 21 below shows an example output of pcm-memory.x while the VPP router
application is forwarding 1518 Byte packets.

Figure 21. Output of pcm-memory.x utility.

The following four metrics are important to observe in the pcm-memory.x output:

• Aggregate memory bandwidth consumption (shown as Node and System
Throughput in above figure): This metric gives high level view of system wide
memory bandwidth consumption and is an important indicator of available memory

58

bandwidth headroom left on the memory channels. Assuming that available memory
bandwidth on a single socket Intel® Xeon® E5-2699 v4 processor is ~70 GBytes/s,
the above example shows that only ~17% of that is consumed and there is still ample
headroom left on memory system. This metric not only implies the current
application is not memory bandwidth bound, but it also indicates that there is an
opportunity of running other application in parallel to leverage the unused memory
bandwidth. As memory bandwidth usage increases, memory latencies seen by both
Cores and PCIe devices gradually rise. Such increases in latency often affect
application level performance. However, relationship between increase in memory
latency and degradation in performance is usually non-linear. Nevertheless, the goal
for the performance optimization should be to reduce memory bandwidth
consumption as much as possible. The use of DDIO is one such software optimization
technique which could minimize memory bandwidth consumption for NF
applications.

• Distribution of traffic across multiple DIMMs (as shown as Mem Ch 0,1,4,5
Reads, Writes): For many networking applications, the memory controllers are
subjected to large amount of concurrent memory accesses from multiple cores in CPU
complex and PCIe agents in IO complex. These memory accesses are often short (64
to 512 Bytes) and at random physical addresses. Such address patterns could result
into frequent time-consuming page open/close operations on DRAM and hence could
potentially degrade DRAM throughput. A well-designed memory controller would
spread system addresses uniformly across all memory channels, and across ranks and
bank in DRAM so to minimize page open/close operations as well as to reduce the
bias against certain address patterns. This metric shows whether memory bandwidth
consumption is fairly distributed across all memory channels or not.

• NUMA (Non-Uniform Memory Access) affinity: Achieving an optimal application
level performance in a dual or multiple processor socket configuration is often a
challenge, especially when it involves heavy use of external devices. An ideal NUMA
optimized application would use cores, PCIe, and memory resources only on one
socket without accessing any of the resources on the other socket(s). A quick way to
check NUMA awareness of an applications is to run it on the cores one socket and
verify that memory bandwidth consumption (as shown by PCM-memory.x output) on
the other socket is close to zero.

• Memory Read vs. Write Ratio: The statistics on Memory Read and Write
bandwidth often help understand type of operations performed by the cores and PCIe
devices. If these numbers are not in accordance with the application code path, tools
like Linux “perf top” could be used to debug possible causes of unintended accesses.
Besides, Intel Xeon Architecture employs various kind of hardware prefetchers to
hide memory latency. In some cases, these prefetchers may end up reading memory
locations which are not used by applications, thereby wasting memory bandwidth. In
such cases, it would be desirable to turn off various hardware prefetchers, rerun the
application, and recheck the performance and memory bandwidth.

59

7.2 Monitoring	Memory	Latency	

One of the most common reasons behind sub-optimal IPC is the execution stalls caused
by data/code misses at all levels of caches resulting in system memory reads. Note that
core to memory latency is never a single value. In complex applications with multiple
cores and PCIe devices accessing system memory, an individual core would experience a
varied degree of memory latencies depending on the amount of concurrent traffic
generated by itself and other agents. Measuring core to memory latency under concurrent
loads is thus essential to understand the severity of execution stalls.

The loaded or dynamic memory latency can be expressed in the following way:
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑀𝑒𝑚𝑜𝑟𝑦_𝐿𝑎𝑡𝑒𝑛𝑐𝑦	(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑤𝑖𝑡ℎ𝑖𝑛	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 	

= 	
								∑	𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑀𝑒𝑚𝑜𝑟𝑦_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑒𝑎𝑐ℎ_𝐶𝑦𝑐𝑙𝑒

#𝑅𝑒𝑡𝑖𝑟𝑒𝑑_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
		

Equation 22. System Memory Latency.

Section 15.5 Measuring Memory Latency outlines the steps to measure memory latency
under concurrent loads.

8 PCIe	Performance	Analysis	

NF workloads often involve significant amount of network traffic and hence consume
high I/O bandwidth. Understanding interactions between Cores and Network Interface
Cards (NICs) can help identify and resolve performance bottlenecks of these applications.
This section first looks at how PCIe devices interact with Intel® Xeon® E5 v4 Family
processor architecture using Direct Data IO Technology. It then moves to a deep dive
into pcm-pcie.x, the tool for PCIe performance analysis.

8.1 Understanding	PCIe	Bandwidth	Consumed	by	NIC	

A packet processing application involves a series of transactions between NIC, memory
or LLC and Core. Figure 22 later in this paper shows sequence of operations involved in
typical “bump in wire” use cases. Two main variants of these transactions are described
in the following sections.

8.1.1 Transactions	Originated	by	NIC	

Network Interface Cards (NICs), such as Intel 82599, Intel XL710, generate two types of
PCIe Read and Write transactions to memory:

• Ethernet packets: The PCIe transaction size depends on Ethernet packet size.

• Transmit (Tx) and Receive (Rx) descriptors: CPU cores and NICs communicate
information through descriptors. The Tx descriptors contain packet physical address,
number of bytes in the packets, and other control information. The Rx descriptors
contain information on receive packet buffer addresses, number of bytes received,
control and status of the received packets etc. These descriptors are stored in
contiguous memory space. In many cases, NICs coalesce multiple descriptors while
writing/reading to system memory so as to optimize PCIe efficiency. In the least
favorable case, one descriptor is read/written at a time, which results into partial or

60

sub cache-line read/write PCIe transactions to LLC/memory and also lowers PCIe
efficiency.

8.1.2 Transactions	Initiated	by	CPU		

CPU cores regularly write to NIC Receive and Transmit tail pointers to notify NICs that
new descriptors are available to fetch and process. Core to PCIe device write transactions
are in Memory Mapped I/O (MMIO) address space and they are mapped in Uncacheable
region. MMIO writes are expensive operations - they can consume up to a few tens of
core cycles. Besides, such operations can end up consuming portion of PCIe bandwidth,
if they are used too often. Due to these two reasons, software should minimize Rx and Tx
tail pointer update operations whenever possible. VPP and DPDK software try to limit
tail pointer updates by issuing one update at every 16th or 32nd packet.

CPU to PCIe device Read transactions are even more costly, as they are dependent on
core to PCIe device round trip latency. Such transactions can consume several hundred
core cycles and hence should be avoided.

8.2 Calculating	PCIe	Bandwidth	from	Ethernet	Packet	Rate	

Applying the explanations and understanding of PCIe bandwidth consumed by CPU and
NIC interactions, we arrive to the two formulas for NIC network packet write and read to
memory.

𝑃𝐶𝐼𝑒_𝑡𝑜_𝑀𝑒𝑚𝑜𝑟𝑦_𝑊𝑟𝑖𝑡𝑒_𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛		𝑖𝑛	𝑀𝐵𝑦𝑡𝑒𝑠/𝑠	
= 	𝐴 + 𝐵 + 𝐶 ∗ 𝐸𝑡ℎ𝑒𝑟𝑛𝑒𝑡_𝑃𝑎𝑐𝑘𝑒𝑡_𝑅𝑎𝑡𝑒	(𝑖𝑛	𝑀𝑃𝑘𝑡𝑠/𝑠)		

Equation 23. PCIe to memory write bandwidth consumption.

With NIC performing following PCIe to Memory/LLC write transactions for each packet:

• A – Number of Bytes in a received Packets

• B – Number of Bytes in Rx Descriptor write back per packet.

• C – Amortized Number of Bytes Tx Descriptor write back per packet

𝑃𝐶𝐼𝑒_𝑡𝑜_𝑀𝑒𝑚𝑜𝑟𝑦_𝑅𝑒𝑎𝑑_𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑖𝑛	𝑀𝐵𝑦𝑡𝑒𝑠/𝑠
= 𝐷 + 𝐸 + 𝐹 ∗ 𝐸𝑡ℎ𝑒𝑟𝑛𝑒𝑡_𝑃𝑎𝑐𝑘𝑒𝑡_𝑅𝑎𝑡𝑒

Equation 24. PCIe to memory read bandwidth consumption.

With NIC performing following PCIe to Memory/LLC write transactions for each packet:

• D – Number of Bytes in Packet to be transmitted – 4 (Ethernet Checksum is
normally calculated and added to a packet by the NIC, hence the last 4 Bytes of
packets are not read from memory).

• E – Number of Bytes in Rx Descriptor per packet.

• F – Number of Bytes in Tx Descriptor per packet.
Assuming legacy descriptors of 16B for Network Interface Cards (NICs), such as Intel
82599, Intel XL710, the values of B, C, E, F would 16 Bytes each.

61

In many cases, software may want to save PCIe bandwidth and can program NIC to write
back only one Tx descriptor at every Nth packet confirming the successful transmission
of all previous packets. In such cases value of C is amortized over N packet.
Taking one Tx descriptor write back at every 16th packet, the value of C becomes
16B/(amortized over 16 packets), i.e. 1 Byte per packet.
Table 16 uses above formula to calculate the raw PCIe data bandwidth consumption for
various packets sizes while forwarding packets at 10 Gbits/s line rate.

Ethernet Packet
Size (in Bytes)

Calculated Packet
Rate at 10 GE line

rate (Million
Packets/s)

Calculated PCIe
Read Bandwidth

Consumption

(MBytes/s)

Calculated PCIe
Write Bandwidth

Consumption

(MBytes/s)

64	 14.88	 1429	 1205	

128	 8.45	 1351	 1225	

200	 5.68	 1318	 1233	

256	 4.53	 1304	 1236	

384	 3.09	 1287	 1241	

512	 2.35	 1278	 1243	

768	 1.59	 1269	 1245	

1024	 1.20	 1264	 1246	

1280	 0.96	 1262	 1247	

1518	 0.81	 1260	 1248	

Table 16. Raw PCIe data bandwidth for 10GE line rate per Ethernet frame size.

The relationships between packet sizes, packet rates and theoretical PCIe bandwidth
consumption, often help debug performance issues in the architecture.

8.3 Intel®	Direct	Data	IO	Technology	(DDIO)	

Intel® DDIO23 technology in Intel® Xeon® E5 v4 Family processor family essentially
enables PCIe devices to write data directly to the Last Level Cache (LLC) rather than
system memory. In order to understand interactions between a PCIe device and LLC, the
discussion is divided into following two scenarios:
1) A PCIe device (e.g. NIC) writes a cache-line to the system memory, the following

DDIO rules apply:

23 Intel® Direct Data I/O technology – http://www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html?wapkw=ddio;
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html.

62

• If the same cache-line is already present in any of the cache ways of Last Level
Cache (LLC), the cache-line is over-written by the new data.

• If the cache-line is not present in any of the cache ways of LLC, the cache-line is
allocated in the LLC then the new data is written to LLC. At a later time, this
cache-line is written back to the memory following the LRU policy. Note that
only a subset of LLC ways are used for allocating cache-lines needed for PCIe
write transactions.

2) A PCIe device is reading a cache-line from the system memory, the following DDIO
rules apply:

• If the cache-line is already present in any of the cache ways of Last Level Cache
(LLC), the cache line is sent to the device without causing system memory read
transactions. A cache-line can be present in the LLC because of two reasons - a
core might have accessed it, or PCIe device might have written it previously.

• If the cache-line is not present in any of the cache ways of Last Level Cache
(LLC), it is read from system memory and sent to PCIe device.

DDIO technology brings two main advantages:

• Saving in Memory Bandwidth: Per explanation in the previous section, High packet
rate network traffic could consume inordinate amount of memory bandwidth. A
DDIO optimized network application can substantially reduce system memory
consumption and help mitigate performance saturation arising from memory
bottlenecks. This technology has been effectively leveraged in high packet rate data
plane processing solutions like FD.io VPP and many other based on the Data Plane
Development Kit (DPDK).

• Low latency accesses to incoming data from NICs: As DDIO allows PCIe device
to write directly to LLC rather than system memory, there is a substantial saving in
latency when a core wants to read the data written by a NIC. For example, a core can
access header of a newly written packet with a latency equal or less than LLC latency.
In absence of DDIO, a core has to access system memory for performing the same
operation and could incur 3x or more latency.

DDIO is one the key features which enables high-speed network data plane performance.
Figure 22 depicts the life of packet for a DDIO optimized DPDK and VPP applications.
Such applications use aggressive memory buffer recycling i.e. once packet buffers are
processed and released, they are reallocated immediately. In this way, the Network card
can rewrite these buffers with new packets while the buffers are still present in LLC. By
keeping the application’s active memory span to minimum, network packets essentially
traverse between cores and NICs through LLC without incurring significant memory
traffic.

63

Figure 22. VPP and DPDK packet processing using Direct Data I/O.

8.4 PCIe	Performance	Monitoring	

The PCM-PCIe.x utility of PCM toolchain offers a convenient way for measuring PCIe
bandwidth in real time. By default, the statistics are shown in with ~1 sec display update
rate. The command line for the tool is as follows:

./pcm-pcie.x –e 1

Figure 23 shows the sample output of pcm-pcie.x for the DPDK l3fwd example
application forwarding 64B packets at 29.76 Mpps rate. Note that all numbers are in
cacheline units. Actual bandwidth can be calculated by multiplying the numbers by 64.
The detailed analysis of the performance numbers is discussed at the end of this section.
Skt | PCIeRdCur | RFO | CRd | DRd | ItoM | PRd | WiL

 0 45 M 8587 K 449 K 102 M 33 M 0 1891 K (Total)

 0 0 0 24 3276 0 0 1892 K (Miss)

 0 45 M 8587 K 449 K 102 M 33 M 0 0 (Hit)

 1 0 0 79 K 66 K 0 0 0 (Total)

 1 0 0 0 5532 0 0 0 (Miss)

 1 0 0 79 K 61 K 0 0 0 (Hit)

 * 45 M 8587 K 528 K 102 M 33 M 0 1891 K (Aggregate)

 Figure 23. pcm-pcie.x output.

Table 17 below describes the interpretation of individual events.

Events Description Notes:

PCIe/Core Read events (PCIe devices/Cores reading from memory)

(1) Core	writes	Rx	descriptor	in	preparation	for	receiving	a	packet.
(2) NIC	reads	Rx		descriptor	to	get	ctrl	flags	and	buffer	address.
(3) NIC	writes	the	packet.
(4) NIC	writes	Rx	descriptor.
(5) Core	reads	Rx	descriptor	(polling	or	irq	or	coalesced	irq).
(6) Core	reads	packet	header	to	determine	action.
(7) Core	performs	action	on	packet	header.
(8) Core	writes	packet	header	(MAC	swap,	TTL,	tunnel,	 foobar..)
(9) Core	reads	Tx	descriptor.
(10) Core	writes	Tx	descriptor	and	writes	Tx	tail	pointer.
(11) NIC	reads	Tx	descriptor.
(12) NIC	reads	the	packet.
(13) NIC	writes	Tx	descriptor.

Minimal	memory	traffic	per	packet.

Most	of	software	thread	work	in	CPU	core	and	local	cache	with	
smart	algos	and	predictive	prefetching	(shifted	 forward	in	time)

PCIe

CPU Cores

CPU Socket

M
em

ory	C
ontroller

DDR	SDRAM

Memory
Channels

LLC

Core	operations
NIC	packet	operations
NIC	descriptor	operations

1

rxd
txd

packet

2
3

4

5

6

8
7

9 10

11
12

13

NICs

VPP	and	DPDK	packet	processing	using	Direct	Data	IO

64

PCIeRdCur PCIe read from system
memory (not allocated line in
LLC)

Hit: Counts the number of cachelines
which were served from LLC to fulfill
PCIe to Memory read requests. Such
LLC hits occur when the requested data
is already deposited in LLC due
previous CPU read/write or writes from
PCIe device to the same cache lines.

Miss: Counts the number of cachelines
which were read from system memory
to fulfill PCIe to Memory read requests.
The software optimization effort should
aim for much larger PCIeRdCur Hit
counts than Miss counts.

DRd PCIe or Cores read from
system memory (cache lines
are allocated line in LLC)

This counter also includes CPU reading
data in LLC

CRd PCIe or read from system
memory (allocate line in
LLC)

This counter includes CPU reading
instruction Code in LLC

PCIe write events (PCIe devices writing to memory)

ItoM PCIe write (full cache line
size and cacheline aligned) to
system memory. ItoM stands
for Invalid state to Modified.

Hit: ItoM Hit counts the number of full
cachelines PCIe device is trying to write
to memory but they are already present
in LLC (in Modified state).
Miss: Miss represents the new cache
lines being allocated while a PCIe
device is writing to memory since they
were not present (in Invalid state). In
this case lines are allocated in the LLC.

As DDIO enabled by default, the
aggregate count would be high for many
I/O centric workloads.
The software optimization effort should
aim for high ItoM Hit count. This can
be done by reusing (recycling) the
buffers quickly so that when a NIC
writes new packets to memory, the old
content of the buffer is still present in
the LLC resulting in LLC hits.

RFO PCIe write to System memory
which is sub-cacheline (less

Hit: When PCIe devices is writing less
than a cache line and cacheline is

65

than 64Byte). The partial
Write results in Read For
Ownership (RFO) event

already present into LLC, this count
would increment.
Miss: When PCIe device is writing less
than a cache line and cacheline is
already present into LLC, this count
would increment. In this case, whole
cacheline is read from memory, and
merge with new PCIe data and
deposited in the LLC.

Software optimization effort should
minimize partial cache lines writes
when possible by aligning buffers at
cacheline boundaries. Besides, it should
aim for high RFO Hit count compared
to Miss rate. This can be done by
reusing (recycling) the buffers quickly.

CPU to Memory Mapped IO events (CPU reading/writing to PCIe devices)

PRd Aggregated MMIO
Read/CPU read transactions
to memory mapped device
memory on all PCIe devices

This counter counts number of Cpu to
Memory Read operations in PCIe
memory mapped I/O space. Such
operations in the Uncacheable regions
are very time consuming.
An I/O optimized software should
minimize this operation. This count
should be very low (a few hundreds)

WiL Aggregate MMIO Write/CPU
write operations to memory
mapped device memory on
PCIe device

This counter counts number of CPU to
Memory write in PCIe memory mapped
I/O space. The most common operations
are updates to the NIC’s Tx and Rx Tail
pointers.
A well optimized software would
minimize such operations. Keeping it
below 1M/s per core is a good target to
hit.

Table 17. PCM-PCIe.x events description.

8.5 Network	Traffic	Analysis	with	PCM-PCIe.x	

This section illustrates the use of pcm-pcie.x for PCIe analysis using DPDK l3fwd
application as an example application. Figure 24 below shows the PCIe characteristics
for this application forwarding 64B packets at rate of 29.8M Packets/s. Note that the ItoM
and PCIedRDcur counts are in cache line (64B) granularity.

66

Skt | PCIeRdCur | RFO | CRd | DRd | ItoM | PRd | WiL

 0 45 M 8587 K 449 K 102 M 33 M 0 1891 K (Total)

 0 0 0 24 3276 0 0 1892 K (Miss)

 0 45 M 8587 K 449 K 102 M 33 M 0 0 (Hit)

 1 0 0 79 K 66 K 0 0 0 (Total)

 1 0 0 0 5532 0 0 0 (Miss)

 1 0 0 79 K 61 K 0 0 0 (Hit)

 * 45 M 8587 K 528 K 102 M 33 M 0 1891 K (Aggregate)

Figure 24. PCM-PCIe.x output for DPDK-L3Fwd application.

The following observations can be made from this measurement:

• All transactions are on Socket 0.

• ItoM (full cachleline writes): Looking at the above figure, 33M transactions/second
show 100% LLC hit, 0 on Miss. These means that all full cacheline PCIe writes are
hitting the LLC. This tells that the software recycles packet buffers very effectively.
Out 33 MT/s cacheline transactions, 29.8 MT/s are from 64 B Ethernet packet writes.
The rest (33-29.8 = 3.2 MT/s) are for Rx descriptor write backs. Since each Rx
descriptors are 16B in size, 3.2 MT/s full cacheline Rx descriptor write back
transactions equate to 3.2 x (64/16) = 12.8 MT/d Rx descriptors. So, out of 29.8 M
packets/s, less than half of the Rx descriptor writebacks seem to coalesce to create
full cachelines. The rest of the Rx descriptors generate sub-cacheline writes. Note that
for this application, Tx descriptors are written at every 16th packet. Hence, they do
not generate full cache line transactions, and thus do not generate IoM event.

• RFO (Partial cacheline writes): Looking at the above figure, 8.58 M/s transactions
show 100% LLC hit, 0 on Miss. For the give test, these counts are solely from Rx and
Tx descriptor write backs. Considering 1 descriptor write at every 16th packet, 29.8/16
= 1.87M T/s are generated from Tx writeback transactions. Rest 6.7 MT/s
transactions are generated from Rx descriptor write backs. Note that Rx descriptors
can still be coalescing to 32, or 48, and that would generate 1 RFO event.

• PCIeRdCur: This event also shows 100% hit rate. This tells that all PCIe to memory
read requests are fulfilled from LLC. In this case, 64B ethernet packets would
generate 29.8 MT/s transactions. Assuming that the Rx and TX descriptor reads are
coalesced to full 64B cacheline sizes, they would generate 29.8M/4 and 29.8M/4
cachelines/s respectively. Sum of ethernet packets and Rx and Tx descriptor adds to
45 MT/s, which is the same as measured by the PCM-PCIe output.

• WiL: Tx and Rx tail pointer are updated at every 32nd packet. So number of CPU to
PCIe MMIO writes are 29.8Mpps/32+ 29.8 Mpps/32 = 1.8 M/s which matches the
pcm-pcie.x output.
In summary, PCM-PCIe.x offers great insight into processor’s PCIe complex
behavior and it could help debug and tune the system level performance.

67

9 Inter-Core	and	Inter-Socket	Communication	

Similar to numerous data center and cloud applications, many packet networking
processing applications make best use of multicore architecture for scaling the
performance. The cores running such applications often share code and data with other
cores in the same CPU socket. In some cases cores may access caches and system
memory from the remote sockets in a multi-socket platform. Frequent sharing of data
between cores and accessing remote socket resources often lead to less than optimal
performance. Understanding core to core and core to remote socket interactions is thus
important for optimizing performance of a multi-socket system.

9.1 Inter-Core	Interactions	within	the	Socket	

In many network applications, cores share the same set of data. Applicable cases include:

• Application runs in multi-threaded setup using multiple cores, with each thread
running the same code and executing all stages of packet processing functions.
However, the threads and associated cores share common memory locations for
storing forwarding table, global counters, etc. FD.io VPP is an example of such
implementation.

• Application divides packet processing work across multiple threads with processing
done in the pipeline fashion. Threads with associated different cores execute certain
network function. Here cores need to exchange metadata, parts of the packet buffers,
and other info. DPDK ip_pipeline example code demonstrates the concept where a
handful of cores handle network interfaces while rest of the cores do packet
processing like Flow classification, ACL, metering, routing, and QoS commonly
found in applications such as Provider Edge Router.

• In a virtualized setup, a core running qemu vhost-user task handles virtual Ethernet
ports, packets, and copying of packets between host space (kernel-mode) and virtio
space (user-mode). The core running qemu VM task reads the copied data. The
opposite action happens when a core running VM copies the data to virtio and a core
running vhost-user reads and eventually transmit the data.

In addtion, the operations like i) resource synchronization using spinlocks, ii) updates of
global statistics counters and iii) software based queuing, also involve core to core
interactions. Such operations result in migration of cacheline(s) between the L1/L2
caches across the cores. In general, core to core data transfers are expensive as they can
consume several tens of cycles and hence should be avoided whenever possible.
Section 15.6 Inter-Processor Communications within the same socket describes the
performance events for detecting core to core transfers.

9.2 Inter-Socket	Interactions	

Most current Operating systems support NUMA. They do a very good job of allocating
the buffers on the memory controllers closer to the cores. Such NUMA optimization
helps minimize core to system memory latency and hence the IPC.

68

However, sometimes there are occasions where a core ends up accessing locations that
are mapped to the remote system memory. Following are few examples, where a core is
subjected to access memory on the other socket:

• A master core allocates packet statistic counters in a buffer which is accessed by
all the cores, including the ones in the remote socket.

• Network cards are on one socket and part of the application runs on both sockets.

• An application pre-allocates a packet buffer pool and the OS migrates an
application to the cores on the other socket.

• In virtualized environment, openvswitch or vhost-user runs on cores on one
socket, and VM runs on cores on the other socket, receiving packets through
virtio interface.

In many cases, such cross-socket transfers could be reduced or eliminated through
software tuning. However, the most important thing is to detect the occurrences of such
transactions.
PCM.x tool offers an easy way to detect such cross-socket transfers over QPI (Quick Path
Interconnect). Figure 25 shows a sample output of PCM.x for a synthetic workload to
illustrate inter-socket communication. Benchmark test setup described in this paper
focused on single NUMA tests, hence there was no inter-socket communication.
Intel(r) QPI traffic estimation in bytes (data and non-data traffic outgoing from
CPU/socket through QPI links):

 QPI0 QPI1 | QPI0 QPI1

 SKT 0 2049 M 1959 M | 10% 10%

 SKT 1 1531 M 1583 M | 7% 8%

Total QPI outgoing data and non-data traffic: 7123 M

Figure 25. PCM.x sample output for QPI transfers.

Note that the QPI counters count both Data cache lines, as well other non-data one (such
as QPI control and snoop packets). It is therefore not easy to judge the exact impact of
these counts on the performance of an applications. In general though, the above counts
should be close to zero for NUMA optimized applications.

69

10 Performance	Tuning	Tips	
This section describes some basic tuning techniques which could be handy while tuning a
workload for high network performance.

10.1 Basic	Tuning	of	the	test	infrastructure	

 Recommendations Notes

1.1 Tune the bios for performance. Avoid
Speed-State, Turbo, Deep C-state for
consistency in performance and better
No packet Drop rate.

Refer to example BIOS setting on
E5-2699v4 given in Section 13.3
Server BIOS Settings.

1.2 Tune PCIe network cards, other PCIe
device for optimum performance.
Turn off ASPM in BIOS, ensure
PCIe devices use Max Payload size
of 256B or more, Max Read request
Size of 512 or more.

Use linux lspci –vvv command to
check. Check BIOS, driver to debug
possible issue.

1.3 Tune OS for low jitter. Compile kernel with options which
produce low jitter, avoid unnecessary
services, use isolcpus when possible.

1.4 Ensure that Memory latency is as
expected.

Run “mlc” to check idle latency.

1.5 Ensure that Memory bandwidth is as
expected (general conservative
formula on Xeon E5 – Expected b/w
per socket is : 8 * DDR * DDR4
speed (e.g2400 for DDR2400) *
number of channels.

Run “mlc” to check the speed.

1.6 Ensure that Memory utilization is
balanced.

Run mlc, run pcm-memory.x and
observer that utilization is equal on
all sockets. If not, check BIOS setting
to ensure that Cluster-on-die is off.

10.2 Simple	performance	debugging	guidelines	while	running	NF	app	

2.1 Ensure that IPC is 1.75 or more. If not, compute is constrained by
Cache, LLC or memory latency.
Debug the code.

70

2.2 Check cycles per packets are within
you expectation. CPP can be
calculated using the formula
explained in Section 3.3
Benchmarking NF Applications.

If CPP is substantially high, compile
the code with aggressive optimization
for the architecture, check code flow.

2.3 Check for memory bandwidth
consumption. Check if Memory b/w
packet is within the expected range.

Use PCM-Memory.x to measure
memory bandwidth. Also ensure that
all channels are uniformly used for
the workloads.

2.4 If performance is below expectation,
check for cross socket interactions.

Use command lines explained in
Appendix C. Find the source of cross
socket interactions.

2.5 If performance is below expectation,
or want to boost performance conduct
TMAM analysis.

Use pmu-tools.

71

11 Conclusions	
Analyzing and optimizing performance of software applications continues to be an area
of ongoing research and development, especially for NF applications. This paper
described a proposed simple methodology of benchmarking and analyzing the most
performance sensitive functional area of NF applications, their data plane.
Following specified benchmarking and analysis methodology and leveraging generally
available test and measurement tools described in this paper, it is quite straightforward to
evaluate NF applications. Using identified baseline NF data plane performance metrics
one can benchmark those applications and compare them in terms of efficiency of using
compute resources and their performance on modern COTS servers. Moreover, provided
analysis of the baseline factors that drive NF data plane performance scalability (core
frequency, simultaneous multi-threading, multi-core), underpinned by measurement data,
should aid users in NF capacity planning and their production deployments. Equally,
described benchmarking metrics, their meaning and optimal value guidelines should help
program developers to identify coding patterns for efficient and performant NF data
planes, and hopefully popularize benchmarking driven NF data plane development.

Applicability of described benchmarking and analysis methodology has been illustrated
by benchmarking actual NF applications, including feature-rich and deployable NF
applications, namely OVS-DPDK and FD.io VPP.
Authors believe that this paper can be used as a stepping stone to establish a reference
standard best practice benchmarking methodology and analysis for NF applications’ data
planes.

Future work needs to focus on further development and tuning the benchmarking
methodology to address variety of NF applications, improving automated testing tools
and their availability, as well as continuous development of measurement and analysis
tools that take advantage of ongoing processor telemetry advancements including the
latest generation of Intel® Xeon® scalable processors.

72

12 References	
[1] “Computer Organization and Design, The Hardware/Software Interface” by David A. Patterson and

John L. Hennessy, Section 1.6 Performance, ISBN: 978-0-12-407726-3.

[2] RFC 2544, “Benchmarking Methodology for Network Interconnect Devices”, March 1999,
https://tools.ietf.org/html/rfc2544.

[3] RFC 1242, “Benchmarking Terminology for Network Interconnection Devices”, July 1991,
https://tools.ietf.org/html/rfc1242.

[4] EEMBC CoreMark - http://www.eembc.org/index.php.

[5] DPDK testpmd - http://dpdk.org/doc/guides/testpmd_app_ug/index.html.

[6] FDio VPP – Fast Data IO packet processing platform, docs: https://wiki.fd.io/view/VPP, code:
https://git.fd.io/vpp/.

[7] OVS-DPDK - https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview.

[8] Intel Hyper-Threading, https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-
threading/hyper-threading-technology.html.

[9] “Intel Optimization Manual” – Intel® 64 and IA-32 architectures optimization reference manual.

[10] Technion 2015 presentation on TMAM , Software Optimizations Become Simple with Top-Down
Analysis Methodology (TMAM) on Intel® Microarchitecture Code Name Skylake, Ahmad Yasin.
Intel Developer Forum, IDF 2015. [Recording].

[11] Linux PMU-tools, https://github.com/andikleen/pmu-tools.

[12] A Top-Down Method for Performance Analysis and Counters Architecture, Ahmad Yasin. In IEEE
International Symposium on Performance Analysis of Systems and Software, ISPASS 2014,
https://sites.google.com/site/analysismethods/yasin-pubs.

[13] PMU tools: https://github.com/andikleen/pmu-tools.

[14] Intel Developer Zone, Tuning Applications Using a Top-down Microarchitecture Analysis Method,
https://software.intel.com/en-us/top-down-microarchitecture-analysis-method-win.

[15] PMU-tools, bdx_server_rations.py - https://github.com/andikleen/pmu-
tools/blob/master/bdx_server_ratios.py.

[16] PMU-tools, bdx_server_rations.py - https://github.com/andikleen/pmu-
tools/blob/master/bdx_server_ratios.py.

[17] Intel® Direct Data I/O technology – http://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology.html?wapkw=ddio; https://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology-brief.html.

73

13 Appendix:	Test	Environment	Specification	
13.1 System	Under	Test	–	HW	Platform	Configuration	

Mother Board Super Micro* X10DRX

Processor Intel Xeon E5-2699 v4/E5-2667v4, Dual Socket configuration

Memory DDR4-2400, 1 DIMM per channel, 4 Channels for each socket

BIOS Version Version 2, 12/17/2015

Network Cards X710-DA4 quad 10 Gbe Port cards, 5 cards total

13.2 System	Under	Test	and	Tested	Applications	–	Software	Versions	

Linux OS Distribution Ubuntu 16.04.1 LTS x86_64

Kernel Version 4.4.0-21-generic

Fortville firmware version FW 5.0 API 1.5 NVM 05.00.04 eetrack 800024ca

DPDK Version DPDK 16.11

VPP Version v17.04-rc0~143-gf69ecfe

QEMU version 2.6.2

OVS version 2.6.90

Guest OS and kernel Ubuntu 16.04.1 LTS x86_64

VPP vnet version v17.04-rc0~143-gf69ecfe

74

13.3 Server	BIOS	Settings	

Menu (Advanced) BIOS Submenu Items BIOS
Settings

Used for the
tests

BIOS
Defaul
t

CPU Configuration:
Advanced Power
Management
Configuration

Hyper-Threading (ALL) Disable Enable

Power Technology Disable Custom

Energy Performance Tuning Disable Enable

Energy Performance BIAS Setting Performance Enable

Energy Efficient Turbo Disable Enable

-> CPU P State Control

EIST (P-States) Disable Enable

Turbo Mode Disable Enable

P-State Coordination HW_ALL HW_A
LL

-> CPU C State Control

Package C State Limit [C0/C1 State] [C6
(Retenti
on)]

CPU C3 Report Disable Enable

CPU C6 Report Disable Enable

Enhanced Halt State (C1E) Disable Enable

Chipset Configuration:
North Bridge -> IIO
Configuration

EV DFX Features Enable Disable

Intel VT for Directed I/O (VT-d) Disable Enable

Chipset -> North
Bridge -> QPI
Configuration

Link L0 P Disable Enable

Link L1 Disable Enable

COD Enable Disable Auto

75

Early Snoop Disable Auto

Isoc Mode Disable Disable

-> North Bridge -
>Memory
Configuration

Enforce POR Disable Auto

Memory Frequency 2400 Auto

DRAM RAPL Baseline Disable Auto

A7 Mode Enable Enable

-> South Bridge

EHCI Hand-off Disable Auto

USB3.0 Support Disable Enable

PCIe/PCI/PnP
Configuration

ASPM Disable Enable

Onboard LAN 1 OPROM Disable PXE

13.4 Packet	Traffic	Generator	–	Configuration		

Traffic Generator Ixia® Traffic Generator

Throughput Test Ixia® Quick Test: throughput rate search for finding zero-frame loss

packet throughput in compliance with RFC 2544
Search algorithm Binary search.
Starting condition 10% of link rate.
Stopping condition Search finds the <0.01% loss rate packet throughput and exceeds

minimum rate change value.
Number of test trials per
each search step

8.

Test trial duration 20 seconds.
Allowed packet loss <0.01%.
Minimum rate change
value

0.1 Mpps.

Test Ixia packet flow definitions

All L2 Ethernet tests 3,125 distinct flows transmitted per interface.
 Each distinct flow with unique tuple of (Source_MAC_Address,

Destination_MAC_Address).

All L3 IPv4 tests 62,500 distinct flows transmitted per interface.

76

 Each distinct flow with unique tuple of (Source_IPv4_Address,
Destination_ IPv4_Address).

Common to all tests Both packet header source and destination address fields incremented
pairwise by 1 in a packet-by-packet sequence.

 Continuous packet flows at fixed rate, with packets equally spaced in
time, no bursts.

 Single Ethernet frame size of 64B including Ethernet FCS, smallest
standard Ethernet frame possible with IPv4 payload.

77

14 Appendix:	Benchmarking	Tools	Use	Guidelines	
14.1 Linux	‘perf’	
How to install Linux ‘perf’ on Ubuntu 16.04:
apt-get install linux-perf

The following conventions are used within this and the following sections:
Set environmental variable $CORENO to the core(s) of interest.

e.g. for monitoring events on core 2, use
export CORENO=2

Or, for monitoring events on core 2,3,4 use
export CORENO=2-4

Monitoring any discrete event using linux ‘perf’:
perf stat -e eventname -C$CORENO -I1000

For example,

perf stat -e cpu/event=0x79,umask=0x30,name=idq_ms_uops/ -C1 –I1000

Locating the hotspot for an event at source code level:
perf top -e eventname -C$CORENO -I1000

For example,

perf top -e cpu/event=0x79,umask=0x30,name=idq_ms_uops/ -C1

Measuring #instructions/cycle (IPC):
perf stat -e instructions,cpu-cycles -C$CORENO sleep 1

Capturing Intel Processor Trace (PT):
Trace data will be in gigabytes if captures continuously.

Thus we will use –S to enable snapshot mode.

In snapshot mode, PT data is only store when perf instance received –USR2 signal

perf record –S -e intel_pt// -C$CORENO

sleep 1

pkill perf –USR2

sleep 1

pkill perf -SIGINT

78

Decoding Intel Processor Trace (PT) data:
perf script --itrace=i1i #i1i: instruction decode, granularity = single instruction

i1i is the lowest level of information we can obtain from PT.

14.2 Performance	Analysis	using	PMU-tools	

How to install PMU-Tools

Pre-requisites: PMU-tools is based on Linux Perf utilities.
Download the tools from https://github.com/andikleen/pmu-tools and compile it.

Update the event list for your processor using the script “event_download.py “
Add the pmu-tools folder to the default path. This would allow ocperf.py and other
utilities to run from any folder.

Monitoring a discrete event using pmu-tools:
ocperf.py stat -e eventname -C$CORENO -I1000

For example,

ocperf.py stat -e idq_ms_uops -C1 -I1000

Locating the hotspot for an event at source code level:
ocperf.py top -e eventname -C$CORENO -I1000

For example,

ocperf.py top -e idq_ms_uops -C1

Getting instructions per cycle (IPC):
ocperf.py stat -e instructions,cpu-cycles -C$CORENO sleep 1

14.3 TMAM	Analysis	using	PMU-tools	
TMAM statistics can be easily gathered with a simple command line.

TMAM Level 1 events:
toplev.py --core C$CORENO -l1 --no-desc -v --ignore-errata sleep 300

TMAM Level 2 events:
toplev.py --core C$CORENO –l2 --no-desc -v --ignore-errata sleep 300

TMAM Level 3 events:
toplev.py --core C$CORENO –l3 --no-desc -v --ignore-errata sleep 300

79

TMAM Level 4 events:
toplev.py --core C$CORENO –l4 --no-desc -v --ignore-errata sleep 300

14.4 Installing	and	using	PCM	tools	

Download the source code from https://github.com/opcm/pcm

Follow the installation steps.
As per the information on the above web site, PCM incorporate provides a number of
command-line utilities for real-time monitoring:

• pcm: basic processor monitoring utility (instructions per cycle, core frequency
(including Intel(r) Turbo Boost Technology), memory and Intel(r) Quick Path
Interconnect bandwidth, local and remote memory bandwidth, cache misses, core and
CPU package sleep C-state residency, core and CPU package thermal headroom,
cache utilization, CPU and memory energy consumption)

• pcm-memory: monitor memory bandwidth (per-channel and per-DRAM DIMM
rank)

• pcm-pcie: monitors PCIe bandwidth and other related statistics
• pcm-numa: monitors local and remote memory accesses
• pcm-power: monitors sleep and energy states of processor, Intel(r) Quick Path

Interconnect, DRAM memory, reasons of CPU frequency throttling and other energy-
related metrics

• pcm-tsx: monitors performance metrics for Intel(r) Transactional Synchronization
Extensions

• pcm-core and pmu-query: query and monitor arbitrary processor core events

80

15 Appendix:	Deep-dive	TMAM	Analysis	using	Linux	perf	and	PMU-
Tools	

This section describes the commands for counting individual events in the TMAM
hierarchy. Once performance bottleneck hotspots are found from the top level TMAM
analysis as described in the Section 6 , these commands could be used for monitoring the
specific events of interest while optimizing the code. For example, if TMAM finds high
counts on the Bad_Speculation.Branch_Mispredicts, the event
“br_misp_retired_all_branches” could be monitored during the code optimization and
benchmarking cycles. These commands would also help locate hotspots in the code by
running “perf top” or “ocperf.py top” on the selected processor core events.

For the sake of completeness, the commands are given for both Linux “perf” utility and
PMU-tools.

15.1 Events	related	to	TMAM	%Retiring	
%Retiring
perf stat -e \
cpu/event=0x3c,umask=0x0,any=1,name=cpu_clk_unhalted_thread_any/,cpu/event=0xc2,umask=0x2
,name=uops_retired_retire_slots/,cpu/event=0xe,umask=0x1,name=uops_issued_any/,cpu/event=
0x79,umask=0x30,name=idq_ms_uops/ -C$CORENO -I1000

or

ocperf.py stat -e CPU_CLK_UNHALTED_THREAD_ANY,\
UOPS_RETIRED.RETIRE_SLOTS,UOPS_ISSUED.ANY,IDQ.MS_UOPS -C$CORENO -I1000

15.2 Events	related	to	TMAM	%Bad_Speculation	
%Bad_Speculation
perf stat -e
cpu/event=0xe,umask=0x1,name=uops_issued_any/,cpu/event=0xc2,umask=0x2,name=uops_retired_
retire_slots/,cpu/event=0xd,umask=0x3,any=1,cmask=1,name=int_misc_recovery_cycles_any/ -
C$CORENO -I1000

or

ocperf.py stat -e
UOPS_ISSUED.ANY,UOPS_RETIRED.RETIRE_SLOTS,INT_MISC.RECOVERY_CYCLES_ANY -C$CORENO -I1000

%Bad_Speculation.Branch_Mispredicts
perf stat -e cpu/event=0xc5,umask=0x0,name=br_misp_retired_all_branches/ -C$CORENO -
I1000

or

ocperf.py stat -e BR_MISP_RETIRED.ALL_BRANCHES -C$CORENO -I1000

%Bad_Speculation.Machine_Clears
perf stat -e cpu/event=0xc3,umask=0x1,name=machine_clears_cycles/ -C$CORENO -I1000
or

81

ocperf.py stat -e machine_clears.cycles -C$CORENO -I1000

15.3 Events	related	to	TMAM	%Frontend_Bound	
%Frontend_Bound
perf stat -e \
cpu/event=0x9c,umask=0x1,name=idq_uops_not_delivered_core/,cpu/event=0x3c,umask=0x0,any=1
,name=cpu_clk_unhalted_thread_any/ -C$CORENO -I1000

or

ocperf.py stat -e IDQ_UOPS_NOT_DELIVERED.CORE,CPU_CLK_UNHALTED.THREAD_ANY -C$CORENO -
I1000

%Frontend_Bound.Frontend_Latency
perf stat -e\
cpu/event=0x9c,umask=0x1,cmask=4,name=idq_uops_not_delivered_cycles_0_uops_deliv_core/ -
C$CORENO -I1000

or

ocperf.py stat -e IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE -C$CORENO -I1000

%Frontend_Bound.Frontend_Bandwidth
perf stat -e
cpu/event=0x9c,umask=0x1,name=idq_uops_not_delivered_core/,cpu/event=0x9c,umask=0x1,cmask
=4,name=idq_uops_not_delivered_cycles_0_uops_deliv_core/,cpu/event=0x3c,umask=0x0,any=1,n
ame=cpu_clk_unhalted_thread_any/ -C$CORENO -I1000

or

ocperf.py stat -e \
IDQ_UOPS_NOT_DELIVERED.CORE,IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE,CPU_CLK_UNHAL
TED.THREAD_ANY -C$CORENO –I1000

%Frontend_Bound.Frontend_Latency.ICache_Misses

Intel® Xeon® E5 v4 Family processors have L1 instruction cache of 32K bytes. If
execution path for an application spans beyond this range, instruction cache miss event is
incremented. The penalty due to instruction cache is calculated using the following
equation.

%	𝐼𝐶𝑎𝑐ℎ𝑒	𝑀𝑖𝑠𝑠𝑒𝑠	 = 	
	𝐼𝐶𝐴𝐶𝐻𝐸. 𝐼𝐹𝐷𝐴𝑇𝐴_𝑆𝑇𝐴𝐿𝐿

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

The event ICACHE.IFDATA_STALL measures the cycles for which a code fetch is stalled.
perf stat -e
cpu/event=0x80,umask=0x4,name=icache_ifdata_stall/,cpu/event=0x3c,umask=0x0,name=cpu_clk_
unhalted_thread/ -C$CORENO -I1000

or

ocperf.py stat -e ICACHE.IFDATA_STALL,CPU_CLK_UNHALTED.THREAD -C$CORENO -I1000

%Frontend_Bound.Frontend_Latency.ITLB_Misses(%)

82

For many network applications the execution path for processing a packet could be
relatively small. Considering large ITLB (Instructions TLB), the chances of having ITLB
miss are relatively small. Even if there is an ITLB miss, it is likely that the ITLB entry is
present in the second level TLB. The overall impact of ITLB Miss could be calculated as
follows:

%	𝐼𝑇𝐿𝐵	𝑀𝑖𝑠𝑠𝑒𝑠	 = 	
7 ∗ 𝐼𝑇𝐿𝐵_𝑀𝐼𝑆𝑆𝐸𝑆. 𝑆𝑇𝐿𝐵_𝐻𝐼𝑇 + 	𝐼𝑇𝐿𝐵_𝑀𝐼𝑆𝑆𝐸𝑆.𝑊𝐴𝐿𝐾_𝐷𝑈𝑅𝐴𝑇𝐼𝑂𝑁

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

perf stat -e
cpu/event=0x85,umask=0x60,name=itlb_misses_stlb_hit/,cpu/event=0x85,umask=0x10,cmask=1,na
me=itlb_misses_walk_duration/ -C$CORENO -I1000

or

ocperf.py stat -e ITLB_MISSES.STLB_HIT,ITLB_MISSES.WALK_DURATION:c1 -C$CORENO -I1000

If %ITLB Misses is more than 0.01%, it is recommended to rearrange the code such that
frequently accessed portions of the code fall into small number of the pages, thereby
limiting ITLB misses. Alternatively, one can use large and super page size (2M or 1G)
for the code segments to minimize ITLB misses.

15.4 Events	related	to	TMAM	%Backend_Bound	

The events related to TMAM %Backend_Bound, %Backend_Bound.Memory,
%Backend_Bound.Core could be measured through pmu-tools “top-level” analysis
scripts.
toplev.py --core C$CORENO –l2 --no-desc -v --ignore-errata sleep 300

There are many events pertaining to %Backend Level 1 and Level 2. Only a handful of
them are described below.

%Backend_Bound.Memory.L1_Bound
perf stat -e
cpu/event=0xa3,umask=0x6,cmask=6,name=cycle_activity_stalls_mem_any/,cpu/event=0xa3,umask
=0xc,cmask=12,name=cycle_activity_stalls_l1d_miss/ -C$CORENO -I1000

or

ocperf.py stat -e cycle_activity.stalls_mem_any,cycle_activity.stalls_l1d_miss -
C$CORENO -I1000

%Backend_Bound.Memory.L2_Bound
perf stat -e \
cpu/event=0xa3,umask=0xc,cmask=12,name=cycle_activity_stalls_l1d_miss/,cpu/event=0xa3,uma
sk=0x5,cmask=5,name=cycle_activity_stalls_l2_miss/ -C$CORENO -I1000

or

ocperf.py stat -e CYCLE_ACTIVITY.STALLS_L1D_MISS,CYCLE_ACTIVITY.STALLS_L2_MISS -
C$CORENO -I1000

%Backend_Bound.Memory.L3_Bound

83

perf stat -e
cpu/event=0xd1,umask=0x4,name=mem_load_uops_retired_l3_hit/,cpu/event=0xd1,umask=0x20,nam
e=mem_load_uops_retired_l3_miss/,cpu/event=0xa3,umask=0x5,cmask=5,name=cycle_activity_sta
lls_l2_miss/ -C$CORENO -I1000

or

ocperf.py stat -e
MEM_LOAD_UOPS_RETIRED.L3_HIT,MEM_LOAD_UOPS_RETIRED.L3_MISS,CYCLE_ACTIVITY.STALLS_L2_MISS
-C$CORENO -I1000

%Backend_Bound.Memory.Store_Bound
perf stat -e cpu/event=0xa2,umask=0x8,name=resource_stalls_sb/ -C$CORENO -I1000

or

ocperf.py stat -e RESOURCE_STALLS.SB -C$CORENO -I1000

15.5 Measuring	Memory	Latency	
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑀𝑒𝑚𝑜𝑟𝑦_𝐿𝑎𝑡𝑒𝑛𝑐𝑦	(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑤𝑖𝑡ℎ𝑖𝑛	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 	

= 	
								∑	𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑀𝑒𝑚𝑜𝑟𝑦_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑒𝑎𝑐ℎ_𝐶𝑦𝑐𝑙𝑒

#𝑅𝑒𝑡𝑖𝑟𝑒𝑑_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
		

The core to system memory average memory latency can be measured using the
following two events:

• The event OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD counts the
number of offcore outstanding cacheable Core Data Read transactions in the super
queue every cycle. A transaction is considered to be in the Offcore outstanding state
between L2 miss and transaction completion sent to requestor (SQ de-allocation).

• The event OFFCORE_REQUESTS.ALL_DATA_RD counts the demand and
prefetch data reads.
perf stat -e
cpu/event=0x60,umask=0x1,name=offcore_requests_outstanding_demand_data_rd/,cpu/event=0
xb0,umask=0x1,name=offcore_requests_demand_data_rd/ -C$CORENO -I1000

or

ocperf.py stat -e
OFFCORE_REQUESTS_OUTSTANDING.DEMAND_DATA_RD,OFFCORE_REQUESTS.DEMAND_DATA_RD -C$CORENO
-I1000

15.6 Inter-Processor	Communications	within	the	same	socket	

Interactions between two cores within the same socket can be measured using the
following three main performance events:

1. The event MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT, counts retired load
uops which data sources were L3 hit and a cross-core snoop hit in the on-package
core cache.

2. The event MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM, counts retired
load uops which data sources were HitM responses from a core on same socket

84

(shared L3). Frequent sharing of modified line could be major source of performance
bottlenecks. Such operations should be minimized when possible.
perf stat -e \
cpu/event=0xd2,umask=0x2,name=mem_load_uops_l3_hit_retired_xsnp_hit/,cpu/event=0xd2,um
ask=0x4,name=mem_load_uops_l3_hit_retired_xsnp_hitm/ -C$CORENO -I1000

or

ocperf.py stat -e \
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT,MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM -
C2$CORNE -I1000

3. The event MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS counts retired
load uops which data sources were L3 Hit and a cross-core snoop missed in the on-
package core cache.
perf stat -e cpu/event=0xd2,umask=0x1,name=mem_load_uops_l3_hit_retired_xsnp_miss/ -
C$CORENO -I1000

or

ocperf.py stat -e MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS -C$CORENO -I1000

15.7 Inter-Socket	Communications	

The following events can be used to measure the number of cacheline accesses made to
the other socket in a dual socket platform.
1. The event offcore_response.demand_data_rd.llc_miss.remote_hitm counts the

memory loads which were fulfilled by the remote socket LLC and the requested
cachelines were in the modified state.

perf stat -e
cpu/event=0xb7,umask=0x1,offcore_rsp=0x103fc00001,name=offcore_response_demand_data_rd_ll
c_miss_remote_hitm/ -C$CORENO -I1000

or

ocperf.py stat -e offcore_response.demand_data_rd.llc_miss.remote_hitm -C$CORENO -
I1000

2. The event offcore_response.demand_data_rd.llc_miss.remote_hit_forward counts the
memory loads which were fulfilled by the remote socket LLC where the requested
lines were in Shared or Exclusive states.

perf stat -e
cpu/event=0xb7,umask=0x1,offcore_rsp=0x87fc00001,name=offcore_response_demand_data_rd_llc
_miss_remote_hit_forward/ -C$CORENO -I1000

or

ocperf.py stat -e offcore_response.demand_data_rd.llc_miss.remote_hit_forward -
C$CORENO -I1000

3. The event offcore_response.demand_data_rd.llc_miss.remote_dram counts the
memory loads which were fulfilled by the System memory attached to the remote
socket.

85

perf stat -e
cpu/event=0xb7,umask=0x1,offcore_rsp=0x63bc00001,name=offcore_response_demand_data_rd_llc
_miss_remote_dram/ -C$CORENO -I1000

or

#ocperf.py stat -e offcore_response.demand_data_rd.llc_miss.remote_dram -C$CORENO -
I1000

15.8 Other	Useful	Events		
DTLB misses can be monitored as follows:
perf stat -e \
cpu/event=0x8,umask=0x60,name=dtlb_load_misses_stlb_hit/,cpu/event=0x49,umask=0x60,name=d
tlb_store_misses_stlb_hit/ -C$CORENO -I1000

or

ocperf.py stat -e DTLB_LOAD_MISSES.STLB_HIT,DTLB_STORE_MISSES.STLB_HIT -C1 -I1000

The following commands can be used for monitoring the number of cycles when the
Divider Unit of a core is active:
perf stat -e cpu/event=0x14,umask=0x1,name=arith_fpu_div_active/ -C$CORENO -I1000

or

ocperf.py stat -e ARITH.FPU_DIV_ACTIVE -C$CORENO -I1000

86

16 Index:	Figures	
Figure 1. Baseline NF data plane benchmarking topology. .. 9	

Figure 2. NF service topologies with NF apps in VMs, connected by vswitch, vrouter. . 10	
Figure 3. NF service topologies with NF micro-apps in Containers connected by vswitch,
vrouter. .. 11	
Figure 4. NF service topologies with NF micro-apps in Containers connected directly and
by vswitch, vrouter. ... 11	
Figure 5. Points of high-level performance statistics in two-socket Intel® Xeon® server.
... 15	
Figure 6. NF Applications Performance Test - Physical Topology. 18	

Figure 7. Number of instructions per packet for benchmarked applications. 22	
Figure 8. Instructions per packet split into I/O, packet processing, application other. 24	

Figure 9. Number of instructions per core clock cycle for benchmarked applications. ... 25	
Figure 10. Number of core clock cycles per packet for benchmarked applications. 27	

Figure 11. Packet Throughput Rate for benchmarked applications with a single core. ... 28	
Figure 12. Packet throughput speedup with core frequency increase. 29	

Figure 13. Packet throughput speedup with Intel Hyper-Threading. 31	
Figure 14. Packet throughput speedup with Multithreading and Multi-core. 32	

Figure 15. High Level view of Intel® Xen® E5 v4 Family processor Architecture 36	
Figure 16. Block Diagram of Intel® Xen® E5 v4 Family processor Core Architecture. 39	

Figure 17. Logical steps in TMAM. ... 40	
Figure 18. TMAM Hierarchy .. 41	

Figure 19. TMAM Level-3: %Backend_Bound.Core Bound. ... 52	
Figure 20. TMAM Level-1 Summary. .. 54	

Figure 21. Output of pcm-memory.x utility. ... 57	
Figure 22. VPP and DPDK packet processing using Direct Data I/O. 63	

Figure 23. pcm-pcie.x output. ... 63	
Figure 24. PCM-PCIe.x output for DPDK-L3Fwd application. 66	

Figure 25. PCM.x sample output for QPI transfers. ... 68	

87

17 Index:	Tables	
Table 1. Example applications benchmarked in this paper. .. 17	

Table 2. Benchmarked server processor specifications. ... 18	
Table 3. Benchmark test variations for listed software applications. 19	

Table 4. Performance and efficiency measured on Intel® Xeon® E5-2699v4 2.2 GHz. 20	
Table 5. Performance and efficiency measured on Intel® Xeon® E5-2667v4 3.2 GHz. 21	

Table 6. Memory bandwidth consumption for tested NF applications. 34	
Table 7. PCIe I/O bandwidth consumption for tested NF applications with 64B Ethernet
frames. ... 34	
Table 8. Mapping of performance tools to CPU architecture analysis area. 38	

Table 9. TMAM Level-1 Analysis. ... 42	
Table 10. TMAM Level-1: %Retiring - breakdown into Level-2 metrics. 44	

Table 11. TMAM Level-2: %Bad_Speculation - breakdown into Level-2 metrics. 45	
Table 12. TMAM Level-1: %Frontend_Bound Stalls - breakdown into Level-2 metrics.47	

Table 13. TMAM Level-1: %Backend_Bound Stalls - breakdown into Level-2 metrics. 49	
Table 14. TMAM %Backend_Bound.Memory_Bound - further breakdown statistics. .. 50	

Table 15. TMAM Level-2: %Backend Core Bound - further breakdown statistics. 53	
Table 16. Raw PCIe data bandwidth for 10GE line rate per Ethernet frame size. 61	

Table 17. PCM-PCIe.x events description. ... 65	

88

18 Index:	Equations	
Equation 1. Classic computer performance equation. .. 12	

Equation 2. Modified computer performance equation for NFV. 13	
Equation 3. NF data plane efficiency equation binding CPP, IPP and IPC metrics. 13	

Equation 4. NF computer performance equation with CPP. ... 13	
Equation 5. Binding the packet Throughput [pps] and CPP benchmarking metrics. 14	

Equation 6. NF computer performance equation with CPP. ... 15	
Equation 7. TMAM Level-1: %Retiring. .. 43	

Equation 8. TMAM Level-2: %Retiring.Base. ... 44	
Equation 9. TMAM Level-2: %Retiring.Microcode_Sequencer. 44	

Equation 10. TMAM Level-1: %Bad Speculations. ... 45	
Equation 11. TMAM Level-2: %Bad_Speculation.Branch_Mispredicts. 46	

Equation 12. TMAM Level-2: %Bad_Speculation.Machine_Clears. 46	
Equation 13. TMAM Level-1: %Frontend_Bound. ... 47	

Equation 14. TMAM Level-2: %Frontend_Bound.Frontend Latency. 48	
Equation 15. TMAM Level-2: %Frontend_Bound.Frontend Bandwidth. 48	

Equation 16. TMAM Level-1: %Backend_Bound. .. 49	
Equation 17. TMAM Level-3: Backend_Bound.Memory_Bound.L1_Bound. 50	

Equation 18. TMAM Level-3: Backend_Bound.Memory_Bound.L2_Bound. 51	
Equation 19. TMAM Level-3: Backend_Bound.Memory_Bound.L3_Bound. 51	

Equation 20. TMAM Level-3: Backend_Bound.Memory_Bound.System_Memory. 52	
Equation 21. TMAM Level-3: Backend_Bound.Memory_Bound.Store_Bound. 52	

Equation 22. System Memory Latency. .. 59	
Equation 23. PCIe to memory write bandwidth consumption. ... 60	

Equation 24. PCIe to memory read bandwidth consumption. .. 60	

END OF DOCUMENT

