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“Simplicity is a great virtue but it requires hard work to achieve it and 
education to appreciate it. And to make matters worse: complexity sells better.” 
 
“Write a paper promising salvation, make it a "structured" something or a 
"virtual" something, or "abstract", "distributed" or "higher-order" or 
"applicative" and you can almost be certain of having started a new cult.” 
 
“Program testing can be used to show the presence of bugs, but never to show 
their absence!” 
 

Edsger Wybe Dijkstra,  
“EWD896: On the nature of Computing Science”,  

“EWD 709: My hopes of computing science”, 
“EWD249: Notes On Structured Programming”, page 7. 

 
 
 
 
 

“Je n'ai fait celle-ci plus longue que parce que je n'ai pas eu le loisir de la 
faire plus courte.” 

“I made this letter longer, only because I have not had the leisure to make 
it shorter.” 

Blaise Pascal, Provincial Letters: Letter XVI (4 December 1656). 
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1 Introduction	
1.1 Preface	

There is a growing expectation that Internet network services, underpinned by network 
functions, need to evolve and become dynamically instantiated in locations and at 
capacity governed by continuously changing and moving service users’ demands. At the 
same time, these network functions are required to dynamically and seamlessly handle IP 
host/route reachability, end-point security and other fundamental aspects of network 
services, delivering them at line-rate speeds with data plane performance being the key 
factor. All of these requirements cannot be achieved in practice with dedicated Hardware-
based network service implementations, opening an opportunity for a new generation of 
Software-based network functions. 

The problem of dynamically and efficiently instantiating Software based Internet services 
at a moment notice is not new and has been already tackled by cloud-native architectures 
and solutions. It is then natural to consider a cloud-native approach for the new Software 
network functions, so that they can benefit from all of the main cloud-native properties, 
including: 

1. Cloud portability - public, private, hybrid, multi-cloud; 

2. Extensibility - modular, pluggable, hookable, composable; 
3. Self-healing - automatic placement, restart, replication, scaling; 

However, for the cloud-native model to work here, the new Software network functions 
must above all provide the high-performance data plane. This is possible only and only if 
the network functions are purposefully coded and optimized for compute platforms 
(servers and any CPU based devices), addressing their Input / Output and memory 
characteristics. It is the “compute-native” network function SW code that is essential to 
achieve efficiency, high throughput (packets and bandwidth) and low latency cloud-
native data plane, in order to meet the expectations of wide portability and applicability 
to many Internet network service use cases. 

This technical paper introduces the main concepts underpinning a systematic 
methodology for benchmarking and analysis of compute-native network SW data plane 
performance running on modern compute server HW. It applies first principles of 
computer science to performance measurements, describing involved aspects of SW-HW 
integration and focusing on the optimal usage of compute HW resources critical to the 
data plane performance. 

Authors believe that following described methodology and defined performance metrics 
should enable the industry community to arrive to a well-defined benchmarking standard 
and apples-to-apples comparison between different network data plane SW applications. 
Furthermore, by accepting these metrics, and using them as a “feed-back loop” for 
continuous native code optimizations, the community can continue the drive towards 
breaking the barrier of One Terabit SW network data plane speeds per single 2RU server 
and increasing the density of data plane network functions and services per unit of 
compute. 
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1.2 Motivation	

Analyzing and optimizing performance of software applications has become increasingly 
challenging due to the overall computing system complexities involved in their 
execution. The compute system stack consisting of layers of Compute Hardware, 
Operating System and Software Application, the interactions between these layers and 
the continuous rapid technological advancements across the layers, all make the 
application performance analysis and optimizations an intricate task.  
Performance optimization challenge becomes ever greater if the aim is to aid in 
developing performance centered programming patterns and techniques with broad 
applicability, great appeal and designed for longevity. 
The rising wave of Software Defined Network (SDN) services invading The Internet and 
Telecom industry by storm, with associated drive towards proliferation of Network 
Function Virtualization (NFV), calls for development of a methodical approach for 
analyzing (and optimizing) the performance of network functions implemented in 
software. 

Network functional area most sensitive to performance optimizations is the data plane. 
This is due to the two main properties of network data plane that are difficult to address 
with compute systems:  

i) Extremely high bandwidth demands for Input / Output operations; 

ii) Tight and strict time budget for completing packet processing operations. 
Translating these properties into requirements imposed on modern network data planes to 
make them handle Gigabit Ethernet rates: 

i) Input / Output bandwidth: 10 Gigabit/sec for 10GbE interface, 100 Gigabit/sec for 
100GbE interface, and in the future Terabit rates;  

ii) Per packet processing time budget dictated by requirement to process rates of 
Millions of packets/sec (Mpps): less than 67 nanoseconds (nsec) to handle rates 
up to 14.88 Mpps for 10GbE line rate, less than 6.7 nsec to handle rates up to 
148.8 Mpps for 100GbE line rate. 

This technical paper aims to help to address these challenges by defining a methodology 
for systematic performance benchmarking and analysis of compute-native Network 
Function data planes executed on Commercial-Off-The-Shelf (COTS) servers, using 
available open-source measurement tools. The following key aspects are covered: 

i) Description of modern server hardware resources vital for executing network 
applications; 

ii) Software interactions with hardware and optimizations of software-hardware 
interface; 

iii) Evaluation of common compute system bottlenecks encountered when 
benchmarking network data planes including processor, memory and network I/O 
resources. 
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In order to illustrate applicability of defined methodology and proposed measurement 
tools, the paper reports benchmarking results and their analysis for a number of example 
network data plane applications – DPDK, FD.io VPP, OVS-DPDK – running on modern 
high-performance servers. 

1.3 Document	Structure	

The paper is organized as follows.  

Section 2. Target Applicability describes how the proposed benchmarking methodology 
and analysis apply to Network Functions (NF) designs and deployment use cases; 
furthermore, it specifies sample NF applications used for benchmarking and analysis in 
this paper.  

Section 3. NF Benchmarking  draws differences and similarities between benchmarking 
compute and networking data plane software workloads, and derives a set of baseline 
performance metrics for NF data plane evaluations.  
Section 4. NF Performance Tests and Results Analysis explains the basic principles of 
proposed performance analysis methodology capturing both utilization efficiency of HW 
resources and network performance metrics, illustrating them with analysis of sample NF 
results.  
Section 5. Intel x86_64 – Performance Telemetry and Tools walks thru the telemetry 
points in Intel® Xeon® machines, including CPU micro-architecture, I/O and memory 
sub-systems vital for executing NF data plane functions; describes used measurement 
tools.  
Section 6. Compute Performance Analysis using Intel TMAM is dedicated to a detailed 
performance analysis of the benchmarked workloads using Top-down Micro Architecture 
Method (TMAM).   

Section 7. Memory Performance Analysis covers memory performance metrics, with 
analysis of results measured for tested NF applications, and Software tool used. 
Section 8. PCIe Performance Analysis delves into PCIe transactions and bandwidth 
consumed by Ethernet frames, description of Intel® Direct Data IO (DDIO) technology 
critical to efficient NF data planes; followed by analysis of PCIe performance 
measurements for tested NF workloads, and Software tool used.  
Section 9. Inter-Core and Inter-Socket Communication briefly reviews aspects related to 
multi-core and multi-socket configurations.  
Section 10. Performance Tuning Tips highlights common techniques for achieving peak 
performance of NF data plane applications executed on the prescribed platforms. 
Section 11. Conclusions summarizes the applicability of proposed benchmarking 
methodology and analysis to evaluate NF data plane applications, compare them and 
identify areas of code improvement.  

Sections 12. to 18. include references, test environment specifications, deeper levels of 
TMAM analysis and index of figures, tables and equations. 
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2 Target	Applicability	
2.1 Network	Function	Topologies	

Described benchmarking and analysis methodology applies to a set of Network Function 
(NF) data plane packet path and topology scenarios including packet processing and 
forwarding between: i) physical interfaces, ii) physical interfaces and multiple Virtual 
Machines, and iii) physical interfaces and multiple Containers.  

2.2 Baseline	Packet	Path	

The baseline data plane design benchmarked in this paper includes the NF application 
running as a user application on a compute host, processing and forwarding packets 
between the physical network interfaces hosted on the Network Interface Cards (NICs) 
within the system. Linux is used as a host Operating System, to manage access to 
available compute resources. NF application is running in Linux user-mode, taking direct 
control of the NIC devices, and enabling it to receive and transmit packets through the 
physical network interfaces with minimal involvement of Linux kernel in data plane 
operation.  

The baseline NF data plane benchmarking topology is shown in Figure 1. 
 

 
Figure 1. Baseline NF data plane benchmarking topology. 

In order to measure the actual performance of evaluated sample NF applications, number 
of different hardware configurations and hardware resource allocations are employed, 
including the scaled-up multi-thread and multi-core layouts. 

Presented baseline setup has two main functional parts, i) driving the physical network 
interface (physical device I/O) and ii) packet processing (network functions). Both parts 
are present in majority of deployments, hence their performance and efficiency can be 
used as a baseline benchmarking reference for evaluating compute native scenarios. 
Other more complex NF designs involve adding virtual network interfaces (virtual I/O, 
memory-based) and more network functions, providing richer composite functionality but 
at the same time using more compute resources. In other words, the baseline NF 
benchmarking data described in this paper can be treated as an upper ceiling of NF 
application capabilities. 

 



                                                                                                                          

 
10 

Sample Virtual Machine (VM) and Container based NF designs are briefly described in 
the following sections. Benchmarking, analysis and optimizations of those composite NF 
designs is subject to future study. 

2.3 With	Virtual	Machines		

A sample design with NF applications running in VMs and NF "service-chain" 
forwarding provided by a common virtual switch NF application running in user-mode is 
shown in Figure 2. 
 

 
Figure 2. NF service topologies with NF apps in VMs, connected by vswitch, vrouter. 

2.4 With	Containers	

A sample design with NF running in Containers and NF "service-chain" forwarding 
provided by a common virtual switch NF application running also in Container is shown 
in Figure 3.  
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Figure 3. NF service topologies with NF micro-apps in Containers connected by vswitch, 
vrouter. 

A variation of NF "service-chain" for NF applications running in Containers using FD.io 
memif virtual interface instead of forwarding thru a virtual switch NF, is shown in Figure 
4. Note the smaller number of virtual interface and packet processing "hops" involved in 
data plane spanning the same number of NF applications. 

 

 
Figure 4. NF service topologies with NF micro-apps in Containers connected directly 

and by vswitch, vrouter. 

2.5 Baseline	vs.	VMs	vs.	Containers	

From performance analysis and benchmarking perspective, there is one common element 
stands out in VM and Container based packet path designs when compared to the 
baseline NF design. It is the need to use a performant fast virtual interface 
interconnecting the NF applications within the compute machine. In most cases this 
involves memory copy operation(s) that significantly impact the NF data plane 
performance. Good examples of virtual interfaces optimized for that purpose are VM 
Qemu vhost-user and FD.io VPP Memif for Containers and user-mode processes. More 
distributed NF designs and topologies that involve multiple number of compute machines 
are just combinations of described NF designs, making the performance analysis 
described in this paper directly applicable to those cases. 
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3 NF	Benchmarking	Metrics	
3.1 Measuring	Computer	System	Performance	

Assessing computer system performance is not a trivial task due to complexity of modern 
compute systems and a variety of performance improvement techniques used in computer 
hardware designs. To address this the industry adopted the classic processor performance 
equation that defines execution time as the main and only complete and reliable measure 
of computer performance1. 

This paper proposes to use the same equation and the program execution time as the 
fundamental measure of NF application performance and efficiency. 

3.2 Benchmarking	Compute	Applications	

Performance of generic compute applications can be measured using the classic computer 
performance equation that defines the program execution time as a reliable measure of 
performance: 

𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑢𝑛𝑖𝑡_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑢𝑛𝑖𝑡

∗
#𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
∗ 𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒 

Equation 1. Classic computer performance equation. 

The equation includes all the key factors that determine time to execute a program: 

1. #instructions/program_unit – number of instructions per program_unit, or how 
big the executable program_unit is for a specific task. 

2. #cycles/instruction – number of CPU core clock cycles per instruction (CPI), or 
how complex are those instructions and how well are they executed on specific 
CPU hardware; often expressed as a reciprocal metric – #instructions/cycle 
(IPC). 

3. cycle_time [sec] – duration of a clock cycle measured in seconds, or how fast is 
the actual CPU hardware executing the instructions; represented by inverse 
metric of CPU core frequency = cycles/second. 

Clearly it is not easy to translate the program unit variable to a modern complex compute 
application workload. That is where various benchmarking approaches, suites, and 
standards define a variety of program units, that are then applied to measure different 
compute systems, their respective sub-systems and operations. Examples of 
benchmarking suites include Standard Performance Evaluation Corporation (SPEC), 
CoreMark® (EEMBC benchmark), Princeton Application Repository for Shared-
Memory Computers (PARSEC), NASA Advanced Supercomputing (NAS), and Stanford 
Parallel Applications for Shared Memory (SPLASH). 

                                                
1 “Computer Organization and Design, The Hardware/Software Interface” by David A. 
Patterson and John L. Hennessy, Section 1.6 Performance, ISBN: 978-0-12-407726-3.  
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3.3 Benchmarking	NF	Applications	

Applying the classic computer performance equation to the Network Function application 
and substituting program unit with per network packet processing operations results in a 
modified performance equation: 

𝑝𝑎𝑐𝑘𝑒𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
∗

#𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

∗ 𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒 

Equation 2. Modified computer performance equation for NFV. 

This approach, in essence, is treating the NF application workload running on a 
computer, as just another program. All generic computer science software workload 
efficiency and performance evaluation methodologies and best practices equally apply to 
NF workloads. 
The Internet and packet networking world, on the other hand, evaluates performance of 
network devices (packet processing systems) by using a different set of metrics defined in 
IETF specifications RFC 25442 and RFC 12423, with major metrics including:  

a) packet throughput measured in packets-per-second [pps]; 
b) bandwidth throughput measured in bits-per-second [bps]; 

c) packet loss ratio PLR;  
d) packet delay (PD) and delay variation (PDV); 

The natural unit of work in networking is a data packet.  
Marrying both benchmarking worlds, computing with networking, and to enable simple 
apples-to-apples comparison between NF systems, a single data packet-centric program 
execution efficiency metric is proposed for benchmarking NF data plane packet 
processing – #cycles/packet (CPP): 

𝐶𝑃𝑃 =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
∗

#𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

 

Equation 3. NF data plane efficiency equation binding CPP, IPP and IPC metrics. 

Applying it to the modified performance equation: 

𝑝𝑎𝑐𝑘𝑒𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] = 𝐶𝑃𝑃 ∗ 𝑐𝑦𝑐𝑙𝑒_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐] =
𝐶𝑃𝑃

𝐶𝑃𝑈_𝑓𝑟𝑒𝑞	[𝐻𝑧]
 

Equation 4. NF computer performance equation with CPP. 

And making a final connection, following is a formula binding the IETF benchmarking 
packet throughput metric and the CPP metric: 

                                                
2 RFC 2544, “Benchmarking Methodology for Network Interconnect Devices”, March 
1999, https://tools.ietf.org/html/rfc2544. 
3 RFC 1242, “Benchmarking Terminology for Network Interconnection Devices”, July 
1991, https://tools.ietf.org/html/rfc1242. 



                                                                                                                          

 
14 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡	[𝑝𝑝𝑠] =
1

𝑝𝑎𝑐𝑘𝑒𝑡_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒	[𝑠𝑒𝑐]
= 	
𝐶𝑃𝑈_𝑓𝑟𝑒𝑞	[𝐻𝑧]

𝐶𝑃𝑃
 

Equation 5. Binding the packet Throughput [pps] and CPP benchmarking metrics. 

CPP represents NF application program execution efficiency for a specific set of packet 
processing operations. Following sections show how the CPP metric can be put to 
effective use for comparing network workload performance across different packet 
processing scenarios, NF applications and compute platforms. To further characterize NF 
application efficiency underpinning CPP, a number of additional compute performance 
metrics are also described, with analysis of their applicability to benchmarking NF 
workloads. 
Clearly it is hard to measure CPP on an individual packet basis in real-time high-
performance NF system. Measurements reported in this paper use average values of CPP 
measured across packet flows undergoing the same packet processing operation. 

3.4 Compute	Resources	Usage	

Optimizing performance of a compute system usually involves going through an iterative 
process of analysis and tuning across involved Software and Hardware system 
components and layers. Network centric software applications exercise and stress 
multiple parts of the CPU micro-architecture, and the first order performance analysis is 
to establish which of these parts are top-level limiting hotspots and bottlenecks. This in 
turn translates into a set of basic questions and top-level performance and efficiency 
metrics: 
1) Packet processing operations on CPU core(s) 

a. What is the efficiency of the NF software and compiler to perform specified 
packet operations – How many instructions are executed per packet? 

b. What is the instruction execution efficiency of an underlying CPU micro-
architecture – How many instructions are executed per CPU core clock cycle?  

2) Memory bandwidth – What is the memory bandwidth utilization? 
3) I/O bandwidth – What is the PCIe I/O bandwidth utilization? 

4) Inter-socket transactions – What is the inter-processor cross-NUMA connection 
utilization? (applicable for multi-socket machines) 

Figure 5 below. depicts the high-level performance probing points related to above 
questions in the two-socket compute server based on Intel® Xeon® processor E5 v4 
Family.  
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Figure 5.  Points of high-level performance statistics in two-socket Intel® Xeon® server. 

In many cases performance metrics for networking workloads are expressed in terms of 
packet processing in packet/sec [pps] or Gbits/sec [Gbps], or packet connections 
established per seconds, or some other packet-centric operations/sec. This leads to 
expressing the basic performance questions from the perspective of packet-centric 
operations, as follows: 

1) Packet processing operations – How many CPU core cycles are required to process 
a packet? 

2) Memory bandwidth – How many memory-read and -write accesses are made per 
packet? 

3) I/O bandwidth – How many bytes are transferred over PCIe link per packet? 
4) Inter-socket transactions – How many bytes are accessed from the other socket or 

other core in the same socket per packet? 
The main goal for any performance optimization exercise is to get the best performance 
with the minimum CPU micro-architecture resources.  
For network workloads, as outlined in Section 3 NF Benchmarking Metrics, the key 
indicator is the number of clocks required to process a packet. Recalling the CPP 
equation: 

𝐶𝑃𝑃 =
#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑎𝑐𝑘𝑒𝑡
∗

#𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

 

Equation 6. NF computer performance equation with CPP. 
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The first metric, #instructions/packet IPP, depends on the program structure and logic, 
complier optimizations and several other optimization techniques that can bring down the 
IPP ratio for specific packet processing function. Code optimization examples include 
DPDK and VPP vectorization code employing CPU Vector instructions such as SSE2, 
AVX2 to process multiple packets with a single instruction.  
The second metric, #cycles/instruction, or equivalent reciprocal metric 
#instructions/cycle (IPC), is one of the most important indicators of an execution 
efficiency on a specific CPU micro-architecture.  

Software developers use several optimization techniques to achieve peak IPC. A good 
example is FD.io VPP, where vector packet processing employs adaptive packets 
batching and graph-of-nodes program structure to optimize use of CPU core cache 
hierarchy for both data and instructions, in turn reducing per packet memory access and 
clock cycles per packet. 
In the tested generation of Intel® CPU micro-architecture (code-named Broadwell), the 
ALU execution unit can retire up to 4 instructions per each clock cycle. This simply 
means that theoretical IPC is 4.0.  Extremely compute oriented workloads can have IPC 
of more than 3. However, IPC of 2.5 to 3 is still considered very efficient. 
Following sections walk through each of these benchmarking dimensions, describing 
performance counters available in Intel® Xeon® processor E5 v4 family x86_64 micro-
architecture, listing and explaining associated metrics and available measurement tools, 
as well as illustrating their applicability and use for sample NF applications.  
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4 NF	Performance	Tests	and	Results	Analysis	
4.1 Benchmarked	NF	Applications	

A set of diverse NF applications has been used to illustrate the applicability of 
performance evaluation and analysis methodology described in this paper. They are listed 
in increasing level of packet processing complexity in Table 1. 

 
Idx Application 

Name 
Application Type Benchmarked Configuration 

1 EEMBC 
CoreMark®4 

Compute benchmark Runs computations in L1 core cache. 

2 DPDK Testpmd5 DPDK example Baseline L2 packet looping, point-to-
point. 

3 DPDK L3Fwd DPDK example Baseline IPv4 forwarding, /8 entries. 

4 FD.io VPP6 NF application vSwitch with L2 port patch, point-to-
point. 

5 FD.io VPP NF application vSwitch MAC learning and switching. 

6 OVS-DPDK7 NF application vSwitch with L2 port cross-connect, 
point-to-point. 

7 FD.io VPP NF application vSwitch with IPv4 routing, /32 entries. 
Table 1. Example applications benchmarked in this paper. 

The first benchmark is chosen to compare pure compute performance against rest of 
benchmarks having I/O as well. 

The benchmarks 2. and 3. cover basic packet processing operations covering both I/O and 
compute aspects of the system. The packet processing functionalities increase with each 
benchmark in the order, and so does the compute requirements.  
The last four benchmarks, listed as 4. to 7. cover the performance of the virtual switch, 
one of the most important ingredient in NF infrastructure. Virtual switch applications are 
tested in L2 switching and IPv4 routing configurations, covering both different 
implementations and various packet switching scenarios.  

                                                
4 EEMBC CoreMark - http://www.eembc.org/index.php. 
5 DPDK testpmd - http://dpdk.org/doc/guides/testpmd_app_ug/index.html. 
6 FDio VPP – Fast Data IO packet processing platform, docs: 
https://wiki.fd.io/view/VPP, code: https://git.fd.io/vpp/. 
7 OVS-DPDK - https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-
overview. 
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4.2 Test	Environment	

4.2.1 Test	Topology	

All benchmarking tests described and referred to in this paper used a simple two-node 
topology with System Under Test server node and packet Traffic Generator node. 
Physical test topology is illustrated in Figure 6. 

 

 
Figure 6. NF Applications Performance Test - Physical Topology. 

4.2.2 Tested	Configurations	

For the sake of the focused evaluation, the paper limits the specifics of performance 
analysis methodologies to a single CPU micro-architecture, namely Intel® Xeon® E5 v4 
Family (formerly known as Broadwell-EP). However, the methodology is equally 
applicable to other recent Intel x86_64 micro-architectures and other CPU types.  
All applications run in user-mode on Linux. To evaluate dependencies on key CPU 
parameters e.g. core frequency, the benchmarks are executed on two Xeon® servers, each 
with two CPU sockets and different Intel® Xeon® E5 v4 family processors. 

 

Idx Core Frequency Core Density Intel® Xeon® Processor Model 

Server1 2.20 GHz (Low) 22C (High) E5-2699v4 55MB 145W 

Server2 3.20 GHz (High)  8C (Low) E5-2667v4 25MB 135W 
Table 2. Benchmarked server processor specifications. 

x86
Server

Packet	Traffic	Generator

NIC1

Socket	0
Xeon	Processor

E5-2699v4	or	E5-2697v4

NIC2 NIC3 NIC4 NIC5
20	of

10GbE	interfaces

x8 x8 x8 x8 x8 PCIe Gen3

Socket	1
Xeon	Processor

E5-2699v4	or	E5-2697v4

DDR4

R
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Except processors, the servers are otherwise identical from both Hardware and Software 
stack perspective. The exact compute server specifications in terms of used Hardware8 
and Software9 operating stack have been provided in Section 13. Appendix: Test 
Environment Specification. 

NF applications’ data planes are benchmarked while running on a single physical CPU 
core, followed by multi-core tests to measure performance speed-up when adding CPU 
core resources. In order to stay within the known network I/O limits of the system, 
following multi-core and multi-10GbE port combinations have been chosen. 

 
Table 3. Benchmark test variations for listed software applications. 

Two main network I/O bottlenecks that drove above choices are: i) 14.88 Mpps 10GbE 
linerate for 64B Ethernet frames, and ii) 35.8 Mpps frame forwarding rate limit per used 
NIC cards (Intel® X710-DA4 4p10GbE). PCI Gen3 x8 slots’ bandwidth has not been 
identified as a bottleneck in any of the benchmarks reported in this paper. 

All tests are executed without and with hardware Symmetric Multi-Threading10 using 
Intel® Hyper-Threading, with consistent mappings of threads to physical cores to 10GbE 
ports. 
All tests are executed using CPU cores located on a single socket and using single 
NUMA node resources.  

4.2.3 Compute	Systems	Under	Test	

All benchmarked Software applications were executed on Supermicro® servers, each 
fitted with two Intel® Xeon® E5 v4 Family processors. 
Details of Systems Under Test and benchmarking environment have been provided in 
Section 13. Appendix: Test Environment Specification. 

                                                
8 Hardware – Xeon® server motherboards by Supermicro®, NICs by Intel® 4p10GE 
X710. 
9 Software stack – Operating System Linux 16.04 LTS. 
10 Symmetric Multi-Threading (SMT) – hardware-based parallel execution of 
independent threads to better utilize micro-architecture resources of CPU core. 

																																#	of	cores		used

Benchmarked	Workload
1	core 2	core 3	core 4	core 8	core

DPDK-Testpmd	L2	Loop 8 16 20 20 20
DPDK-L3Fwd	IPv4	Forwarding 4 8 12 16 16
VPP	L2	Patch	Cross-Connect 2 4 6 8 16
VPP	L2	MAC	Switching 2 4 6 8 16
OVS-DPDK	L2	Cross-Connect 2 4 6 8 16
VPP	IPv4	Routing 2 4 6 8 16

Number	of	10	GbE	ports	used	per	test
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4.2.4 Packet	Traffic	Generator	and	Offered	I/O	Load	

Ixia®11 packet traffic generator was used for all tests. Purpose developed automation test 
tools used Ixia Python API for controlling the traffic generator and to ensure consistent 
execution across multiple test iterations.  

Configured network I/O packet load for the L2 tests involved 3,125 distinct (source, 
destination) MAC flows generated per interface, and highest scale of 50,000 flows for 16 
of 10GbE interfaces. Each IPv4 test involved 62,500 distinct (source, destination) IPv4 
flows per interface, and highest scale of 1,000,000 IPv4 flows. All flows were configured 
with 64Byte Ethernet L2 frame size. 
Details of packet traffic generator configuration have been provided in Section 13. 
Appendix: Test Environment Specification. 

4.3 Benchmark	Results	and	Analysis	

4.3.1 Measurements		

Following tables show the test results for benchmarked NF applications including all 
identified high-level performance and efficiency metrics: i) Throughput #packets/sec 
[Mpps], ii) #instructions/packet (IPP), iii) #instructions/cycle (IPC) and iv) resulting 
#cycles/packet (CPP). EEMBC CoreMark® benchmark results are listed for comparison 
of CPU core usage metrics, more specifically #instructions/cycle. 

All benchmarked NF applications focus on packet header processing. Therefore, all 
benchmarks were conducted with smallest possible Ethernet frame size (64B), as it 
creates maximum stress scenario on processor cores, network devices, and interactions 
among them. In other words, the benchmarks are aimed at achieving maximum packets 
per second processing rate and throughput. 
Results for the two tested processor types, Intel® Xeon® E5-2699v4 2.2 GHz and Intel® 
Xeon® E5-2667v4 3.2 GHz, are listed in Table 4 and Table 5 respectively.  

 
Table 4. Performance and efficiency measured on Intel® Xeon® E5-2699v4 2.2 GHz. 

 

                                                
11 Other names and brands may be claimed as the property of others. 

The	following	table	lists	the	three	efficiency	metrics	that	matter	for	networking	apps:	i)	instructions-per-packet	(IPP),	ii)	instructions-per-cycle	(IPC)	and	iii)	resulting	cycles-per-packet	(CPP)	for	apps	benchmarked	in	this	paper.

Benchmarked	Workload

Dedicated	1	physical	core	with	=> noHT HT noHT HT noHT HT noHT HT
CoreMark	 [Relative	to	CMPS	ref*] 1.00 1.23 n/a n/a 2.4 3.1 n/a n/a
DPDK-Testpmd	L2	Loop 34.6 44.9 92 97 1.4 2.0 64 49
DPDK-L3Fwd	IPv4	Forwarding 24.5 34.0 139 140 1.5 2.2 90 65
VPP	L2	Patch	Cross-Connect 15.7 19.1 272 273 1.9 2.4 140 115
VPP	L2	MAC	Switching 8.7 10.4 542 563 2.1 2.7 253 212
OVS-DPDK	L2	Cross-connect 8.2 11.0 533 511 2.0 2.6 269 199
VPP	IPv4	Routing 10.5 12.2 496 499 2.4 2.8 210 180

Throughput	
[Mpps]

#instructions	
/packet

#instructions	
/cycle

#cycles	
/packet

*CoreMarkPerSecond	reference	value 	-	score	in	the	reference	configuration:	E5-2699v4,	1	Core	noHT.
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Table 5. Performance and efficiency measured on Intel® Xeon® E5-2667v4 3.2 GHz. 

Next sections provide analysis and interpretation of reported benchmarking results. Initial 
analysis of measured (and derived) baseline packet processing performance metrics is 
delivered first, followed by analysis of throughput speedup due to core frequency 
increase, use of Intel Hyper-Threading and use of multi-threading across multiple cores. 
Initial analysis is concluded with review of memory bandwidth consumption, PCIe I/O 
bandwidth consumption and inter-socket transactions measured during the benchmarking.  

4.3.2 Initial	Analysis	

Here are the initial observations of measured baseline performance and efficiency 
metrics. Any references to measured values with Intel Hyper-Threading enabled (HT 
columns in tables) are quoted outside the round brackets, values with Intel Hyper-
Threading disabled (noHT columns in tables) are quoted inside the round brackets. In 
cases when different values are measured on processors E5-2699v4 (2.2 GHz) and E5-
2667v4 (3.2 GHz), they are referred to as a range of values N-M, respectively. 

4.3.2.1 Instructions-per-Packet	

Instructions-per-Packet metric (IPP, #instructions/packet) greatly depends on the number 
and type of packet processing operations required to realize a specific network function 
(or set of network functions), and how optimally they are programmed. One expects the 
simpler the function, the smaller number of instructions per packet, as illustrated in 
Figure 7 for benchmarked NF applications. 

The	following	table	lists	the	three	efficiency	metrics	that	matter	for	networking	apps:	i)	instructions-per-packet	(IPP),	ii)	instructions-per-cycle	(IPC)	and	iii)	resulting	cycles-per-packet	(CPP)	for	apps	benchmarked	in	this	paper.

Benchmarked	Workload

Dedicated	1	physical	core	with	=> noHT HT noHT HT noHT HT noHT HT
CoreMark	 [Relative	to	CMPS	ref*] 1.45 1.79 n/a n/a 2.4 3.1 n/a n/a
DPDK-Testpmd	L2	Loop 47.0 63.8 92 96 1.4 1.9 68 50
DPDK-L3Fwd	IPv4	Forwarding 34.9 48.0 139 139 1.5 2.1 92 67
VPP	L2	Patch	Cross-Connect 22.2 27.1 273 274 1.9 2.3 144 118
VPP	L2	MAC	Switching 12.3 14.7 542 563 2.1 2.6 259 218
OVS-DPDK	L2	Cross-Connect 11.8 14.6 531 490 2.0 2.2 272 220
VPP	IPv4	Routing 15.1 17.8 494 497 2.3 2.8 212 180
*CoreMarkPerSecond	reference	value 	-	score	in	the	reference	configuration:	E5-2699v4,	1	Core	noHT.

Throughput	
[Mpps]

#instructions	
/packet

#instructions	
/cycle

#cycles	
/packet
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Figure 7. Number of instructions per packet for benchmarked applications. 

And this is exactly what can be glanced from listed results when comparing DPDK-
Testpmd L2 packet looping function yielding IPP of 96-97 (92) with VPP and OVS-
DPDK L2 Cross-connect, yielding 273-274 (273) and 490-511 (531-533) respectively. 
Significant IPP difference between VPP and OVS-DPDK indicates more optimally 
programmed operations on VPP for this relatively simple L2 Cross-connect network 
function. Notably VPP L2 Switching has a lower IPP of 563 (542), when compared to 
OVS-DPDK L2 Cross-connect. 

Similar effect of substantial difference in offered network functionality is visible when 
comparing DPDK-L3Fwd IPv4 forwarding with VPP IPv4 routing functions, yielding 
IPP of 139 (139-140) and 497-499 (494-496) respectively. VPP implements a complete 
set of production-ready IPv4 routing functions that DPDK-L3Fwd lacks, including 
counters, error checks, complete header processing. 
There is another aspect worth noting here. All of the NF applications tested do rely on the 
same DPDK NIC driver, and albeit they may differ in usage of the driver code, DPDK 
driver is the common program component. 

With DPDK-Testpmd implementing the thinner network function from the tested lot (it 
is just a basic packet loop function between Rx and Tx), DPDK-Testpmd program 
spends most of its instructions on I/O interface operations between the CPU core and the 
NIC card(s), and as such provides a good estimate of the associated IPP cost of these 
operations for other NF applications tested. 
There is one anomaly observed for OVS-DPDK L2 Cross-Connect, with ~5% difference 
in instruction/packet count between the two processors tested in HT mode (511 vs. 490), 
due to different #instructions/cycle measured for this case. Further explanation is given in 
Section  4.3.2.3 Instructions-per-Cycle. 
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Note that the reported instructions-per-packet are measured indirectly, calculated using 
the formula IPP = IPC * CPP. IPC is measured through the performance counters 
whereas CPP is derived from the packet throughput rate measured by the traffic generator 
and the core frequency (see Equation 5).   

4.3.2.2 Instructions-per-Packet	–	I/O	vs.	Packet	Processing	Operations	

Additional insight into the instructions-per-packet metric for tested NF applications is 
provided by using Intel Processor Trace (PT) tool on tested Intel® Xeon® E5 v4 
Familyprocessors. PT is an Intel CPU feature that records branch retiring histories and 
stores them in highly compressed format in memory. Through post-processing PT data, 
users can reconstruct the exact runtime program execution flow and identify functions 
and number of instructions executed for different types of per packet operations.  

For the purpose of this paper, PT data was captured using Linux perf-record tool and then 
translated to instruction logs with Linux perf-script tool. All of the benchmarked NF 
applications use loops to process packet in batches and the instruction logs represent a 
unroll view of these batch processing loops. With further post-processing, the instruction 
logs were divided into groups starting at a DPDK receive function and ending at the next 
DPDK transmit function. Each group of instruction logs signifies packet processing of 
single packet batch. Packet batch size information can be obtained either via 
understanding of specific NF application or by inspecting DPDK receive function 
instruction counts (since packets are received in a loop and each loop iteration will have 
fixed number of instructions). Finally, after dividing instructions-per-packet-batch by 
packet-batch-size, one can estimate the instructions-per-packet with additional inside on 
the type of functions and operations being executed per packet. 

Figure 8 shows post-processed PT data generated for benchmarked NF applications, 
splitting per packet instructions into three categories: a) I/O operations, b) packet 
processing operations and c) application other operations. 
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Figure 8. Instructions per packet split into I/O, packet processing, application other. 

Presented Processor Trace data must be treated as indicative, due to restricted 
functionality of the first generation of PT supported on tested Intel® Xeon® E5 v4 
Familyprocessors, with tracing consuming substantial resources. Next generation of 
Intel® Xeon® processors support enhanced PT functionality with greatly reduced 
resource footprint, enabling more granular and accurate analysis of run-time execution of 
functions and instructions, and allows for core clock cycle usage tracking. 
Even from this indicative data, it is clear the DPDK-Testpmd IPP metric is dominated by 
I/O operations with almost no instructions spent on processing packets. For DPDK-
L3Fwd and VPP L2 Patch Cross-Connect I/O operations still dominate the IPP budget, 
but packet processing instruction count becomes substantial, about 40% and 20% of the 
overall IPP value respectively. For remaining NF applications, IPP metric is dominated 
by packet processing operations, with I/O constituting 20 to 40% of the overall IPP value. 
Noticeably, for all tested scaled-up VPP configurations, both L2 MAC switching and 
IPv4 routing, I/O instructions still consume 40% of the overall instruction-per-packet 
metric, a substantial amount. 

4.3.2.3 Instructions-per-Cycle	

There is a number of underlying reasons behind the low (i.e. below 2) values of 
Instructions-per-Cycle metric (IPC, #instructions/cycle). The most common is CPU core 
waiting for the data from various levels of cache or system memory. This especially 
applies to memory and I/O intensive programs like NF data planes. On the other extreme, 
IPC can go artificially high if software program is polling for a variable to be updated by 
I/O or another core in a tight loop. In this case, little effective work is done, but IPC goes 
high due to execution of a small piece of code in the tight loop. In such case, per CPP 
Equation 3, this would also mean that IPP will show high number of instructions per 
packet even though part of the instructions are consumed while polling and not for actual 
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packet processing. Nevertheless, IPC is usually the first attribute to be looked at for any 
program performance analysis.  

 
Figure 9. Number of instructions per core clock cycle for benchmarked applications. 

From all benchmarked workloads, CoreMark scores the highest IPC of 3.1 (2.4) with 
Hyper-Threading yielding a 29% increase due to more efficient use of out-of-order core 
execution engine that HT brings. CoreMark program fully executes in L1 cache, and 
clearly does not suffer from cache hierarchy or memory induced delays, what explains 
such a high score, out of theoretical maximum of 4.0 in tested CPUs. CoreMark IPC 
score is used as a reference to compare NF workloads against. 
The closest to CoreMark is VPP IPv4 Routing with IPC scores of 2.8 (2.3-2.4) yielding 
17% increase with HT. Here VPP is as efficient as CoreMark w/o HT, and only 10% less 
efficient w/ HT. Knowing the levels of I/O load and cache/memory load involved, this 
indicates extremely optimized code in VPP for IPv4 routing path. 
Next are VPP L2 Switching and OVS-DPDK L2 Cross-connect scoring 2.6-2.7 (2.1) 
and 2.7 (2.2) respectively. These are still good IPC scores, especially w/HT, but clearly in 
both cases L2 packet paths are less performance optimized compared to VPP for IPv4 
routing path.  
VPP L2 Cross-connect follows with IPC of 2.3-2.4 (2.2) and scores lower than VPP L2 
switching path, an interesting phenomenon. Most likely it is down to I/O packet move 
operations dominating L2 Cross-connect packet processing path, with associated intense 
interactions with cache hierarchy, memory and I/O sub-systems. Further runtime 
measurements are required to fully determine the reason here (e.g. by using recently 
available Intel® Processor Trace tooling), and are subject to further study. 
Trailing the pack from IPC score perspective are DPDK-Testpmd and DPDK-L3Fwd 
with IPC scores of 1.9-2.0 (1.4) and 2.1-2.2 (1.5). Albeit still scoring IPC above 2 w/ HT, 
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both DPDK sample applications have substantially lower scores compared to all other 
applications tested. Similarly, to VPP L2 Cross-connect case, it is mostly due to their 
operations being dominated by I/O vs. packet processing, as explained the lower IPC 
score in the opening paragraph to this section. Further study and runtime measurements 
are required to fully determine the reason and difference against other workloads tested. 
Repeated measurements registered one anomaly for OVS-DPDK L2 Cross-Connect, 
where IPC gets reduced by 15% (from 2.6 to 2.3) when scaling the frequency in HT 
mode. This indicates the workload is less efficient in hiding the latency of Last Level 
Cache (LLC), memory and PCIe I/O access when two parallel threads are run at higher 
core frequency. This is due to the fact that LLC, memory, and PCIe complex have their 
own frequency domains independent from the core, and IPC may not necessarily remain 
the same as the load increases and a core’s access patterns to these domains change. 

IPC is measured using Intel® on-chip Performance Monitoring Units (PMUs) hardware 
counters embedded in tested CPUs. Section 5.1 Telemetry Points in Intel® Xeon® E5 
Processor Architecture describes the PMU architecture of Intel® Xeon® E5 v4 Family 
processors in more detail. 

Note of caution: One should not overstress the importance of IPC metric as a standalone 
program execution efficiency measure. It is IPC in combination with IPP that more 
accurately represent the actual network function implementation efficiency. And this 
brings us to the CPP metric. 

4.3.2.4 Cycles-per-Packet	

Cycles-per-Packet metric (CPP, #cycles/packet) is the direct measure of time spent by 
compute machine in processing a packet. Serious software optimization techniques 
analyze cycles consumed by different packet processing functions and try to save every 
cycle possible. Clearly this technique has been applied to all NF applications tested, as all 
of them measure good CPP values. 
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Figure 10. Number of core clock cycles per packet for benchmarked applications. 

Still there are some interesting differences. 

DPDK-Testpmd and DPDK-L3Fwd lead the pack with lowest CPP values of 49-50 (64-
68) and 65-67 (90-92) respectively. These low CPP values reflect the fact that both 
applications are dominated by DPDK I/O operations, with minimal additional packet 
processing. All other benchmarked NF applications and packet paths use the same DPDK 
I/O operations, but then they implement complete network functions that call more 
packet processing operations. And it all adds up. 

What is interesting are the lower CPP values for VPP compared to OVS-DPDK. They do 
result from VPP leading with both IPP and IPC metrics across all packet paths as noted 
earlier. Among different VPP packet paths, L2 Cross-connect comes as the lowest-cost 
cycle-wise with 115-118 (140-144), what is not surprising as it is the simplest packet 
path. But then surprisingly it is followed by VPP IPv4 Routing packet path with 
impressive CPP of 180 (210-212), ahead of VPP L2 Switching with CPP of 212-218 
(253-259). This is expected due to L2 switching path having to deal with both source and 
destination address lookup, as seen in higher #instr/packet measurements reported in the 
earlier section. All VPP packet paths compare favorably with OVS-DPDK L2 Cross-
connect with CPP of 199-220 (269-272). 

All tests show lower CPP value (an improvement, as lower is better) for tests w/ HT 
compared to w/o HT, confirming expectation that Hyper-Threading improves physical 
core utilization efficiency. However, the relative change differs across the NF 
applications. DPDK-Testpmd shows 23% to 26% decrease of CPP value. Similarly, 
DPDK-L3Fwd shows 27% to 28% decrease. VPP on the other hand shows a lower 
decrease of CPP between 14% and 18% depending on the packet path tested. OVS-
DPDK measured CPP value decrease of 20% to 30%. 
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Also note that when CPP remains almost the same for both high and low frequency 
CPUs, it directly implies that the performance scales linearly with cpu frequency.  

Reported average #cycles-per-packet are measured indirectly, calculated using the 
formula CPP = Core_Frequency / Throughput [pps].  

4.3.2.5 Packets-per-Second	Throughput	

Measured packet throughput [Mpps] values are inversely proportional to reported CPP 
values, therefore the same observations noted for CPP equally apply here. The Mpps per 
core metric is very commonly used as a basic performance sizing metric for NF data 
plane capacity planning. Especially that it also used as the main reference value for 
analyzing multi-threading performance speedup.  

 
Figure 11. Packet Throughput Rate for benchmarked applications with a single core. 

Reported packet throughput [Mpps] values are measured directly using Ixia® traffic 
generator. 

4.3.2.6 Initial	Conclusions	

From reported performance data and the initial observations, it is clear that all tested NF 
applications have been quite well optimized for performance on Intel® Xeon® E5 v4 
Family processors. Noted efficiency differences between the DPDK Testpmd and L3Fwd 
and all other NF workloads result from DPDK applications focusing mainly on I/O 
operations with minimal packet processing. Furthermore, looking specifically at 
cycles/packet (CPP) metrics measured for VPP and OVS-DPDK, VPP clearly leads with 
lowest CPP values and highest packet throughput rates for all tested packet paths and 
configurations. This is a good indicator of levels of optimizations present in VPP data 
plane and its leadership in software data plane space.  
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It is also clear that CPP is indeed the base efficiency metric that allows for direct 
comparison of NF data plane implementations. It applies when comparing the same 
network function implemented in different NF Apps running on the same HW, and 
equally when running the same NF Apps on different HW or in different configurations. 
CPP is a metric that binds other efficiency metrics (see Equation 3) and the metric that 
directly translates into the main packet forwarding performance metric, the packet 
throughput rate (see Equation 5). 

4.3.3 Throughput	Speedup	Analysis	

4.3.3.1 Processor	Core	Frequency	

One expects performance to proportionally scale with processor core frequency, in 
perfect case. For pure compute workloads, the faster the clock frequency, proportionally 
more work is executed. For networking loads, perfect scaling with frequency means 
constant CPP, and proportionally more packets being processed per second. And this 
indeed applies to the benchmarked NF applications.  
Figure 12 shows relative packet throughput increase between E5-2699v4 processor 
clocked at 2.2 GHz and E5-2667v4 processor clocked at 3.2 GHz. 

 
Figure 12. Packet throughput speedup with core frequency increase. 

Although benchmarked NF applications show reasonably linear scaling of performance 
with frequency, such close to perfect scaling may not be always achievable for a number 
of reasons. Here some common examples: 

• By increasing core frequency, performance could hit to Gigabit Ethernet link line-
rate, NIC packet throughput limit or PCIe slot I/O bandwidth limit. 
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• Workload cannot hide latency of Last Level Cache, memory, or I/O access. LLC, 
memory, and PCIe have their own independent frequency domains different than the 
core, and if they become an impacting factor the performance would not linearly scale 
with the core frequency. This is the most likely reason behind the anomaly observed 
for OVS-DPDK L2 Cross-Connect, with lower than expected throughput speedup. 

• Cores are contending for the same cache-line frequently (e.g. spin locks), wasting 
uncertain number of cycles at different core frequencies. 

4.3.3.2 Intel	Hyper-Threading	with	Multi-Threading	

Intel® Hyper-Threading (HT), an implementation of Simultaneous Multi-Threading 
(SMT), is a technique for improving the overall instruction execution efficiency of 
superscalar processor CPUs by using hardware multi-threading. In general, SMT is 
expected to permit multiple independent program threads of execution to better utilize the 
resources provided by any modern processor architecture. 
Intel HT enables single physical processor core to appear and behave as two logical 
processors to the operating system. Each logical processor has its own architecture state 
and has its own full set of data registers, segment registers, control registers, debug 
registers, and most of the Model Specific Registers (MSR) used to control x86 cores. 
Each hyper-thread has also its own advanced programmable interrupt controller (APIC). 
The logical cores share the Frontend and Backend resources in the physical cores 
including L1, L2 caches, execution engines, instruction decoder, schedulers, buffers, 
uncore interface logic.  
The core achieves hyper-thread level parallelism by out-of-order scheduling to maximize 
the use of execution units during each cycle. In essence, a hyper-thread would try to use 
unused execution slots when its pairing hyper-thread is either idle or cannot make 
forward progress due to execution stalls. If both hyper-threads are competing, they would 
share resources in a fair manner. As a result, performance metrics per physical core could 
change when using hyper-threads compared to the non-hyper-thread situation:  

i) Overall #instructions/packet metric could improve due to the hyper-thread level 
parallelism; 

ii) Percentage of retiring instructions could increase due to the increased utilization 
of the core execution resources; 

iii) Average percentage of the core backend bound penalty could decrease; 

iv) Average percentage of the core frontend bound penalty could increase, as more 
instructions are demanded and executed by the core backend.  

The performance change between Hyper-Thread and non-Hyper-Thread setups highly 
depends on the characteristics of the programs running on each thread. 

For more detailed description of Intel Hyper-Threading technology please refer to 
available online Intel documentation12. 

                                                
12 Intel Hyper-Threading, https://www.intel.com/content/www/us/en/architecture-and-
technology/hyper-threading/hyper-threading-technology.html. 
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Figure 13. Packet throughput speedup with Intel Hyper-Threading. 

All benchmarked NF applications demonstrate a packet throughput increase when paired 
threads are running on Hyper-Thread enabled processors. DPDK-Testpmd and DPDK-
L3Fwd exhibit greatest performance speedup of ~1.3 to ~1.4 (~30 to ~40% increase), 
with the rest of the NF applications’ speedup due to use of HT in the range of ~1.13 to 
~1.25 (~13 to ~25%). The main difference between these two groups of NF applications 
is the former ones executing a limited number of packet processing operations, with their 
#instructions/packet budget dominated by I/O operations, as pointed out in Section 
4.3.2.1 Instructions-per-Packet. Further analysis of this phenomena is provided in Section 
6 Compute Performance Analysis using Intel TMAM. that describes analysis and 
interpretation of processor performance counters data using Intel TMAM methodology. 

4.3.3.3 Multi-Core	with	Multithreading	

Most of NF applications are nowadays capable of running multiple SW threads dealing 
with data plane packet processing. Subject to the actual SW implementation, the gain of 
running multithreaded and multi-core greatly depends on contention for shared HW 
resources (cache, memory, I/O) and synchronization (locks, synchronization, load 
imbalance). Only in ideal situation the speedup resulting of using multiple cores is 
actually linear.   
Figure 14 graphs show measured packet throughput performance for all benchmarked NF 
applications, running in multi-threaded configurations ranging from 1 to 8 cores, without 
Hyper-Threading (1 thread per each core) and with Hyper-Threading (2 threads per each 
core). For comparison, perfect linear multi-core speedup is plotted based on single core 
performance. All tests are done with 64Byte Ethernet frames on the compute machine 
with Intel® Xeon® 2699v4 2.2 GHz processors. Very similar speedup behavior has been 
observed on the compute machine with Intel® Xeon® 2667v4 3.2 GHz CPUs (results not 
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plotted). To ensure equal load distribution per core, all L2 tests were done with 3,125 
MAC flows per 10GbE port, and all IPv4 tests were done with 62,500 IPv4 flows per 10 
GbE port. Resulting highest scale tested with 16 10GbE ports included 50,000 MAC 
flows and 1,000,000 IPv4 flows respectively. 

  

   

  
Figure 14. Packet throughput speedup with Multithreading and Multi-core. 

All benchmarked NF applications demonstrate close to perfect linear multi-core scaling. 
Significant degradation is only observed for DPDK-Testpmd and DPDK-L3Fwd, and 
this is due to reaching the hardware limit of packet throughput per NIC (35.8 Mpps). 
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When operating within the packet throughput limits per NIC (35.8 Mpps) and per 10GbE 
port (14.44 Mpps), the performance degradation vs. perfect in tests up to 8 cores, stays 
well within the -10%, with the exception of OVS-DPDK where it goes up to -14%. 

4.3.4 Further	Analysis	

Further analysis of performance test results and associated collected hardware 
performance counters data require deeper understanding of modern processor CPU 
micro-architecture and a well-defined interpretation approach for analyzing underlying 
compute resource utilization and hotspots limiting program execution performance. 

Intel® Top-down Microarchitecture Analysis Method (TMAM) is well suited to address 
this for modern Intel processors. In short, “TMAM is a practical method to quickly 
identify true bottlenecks in out-of-order processors including the Intel® Xeon®. The 
developed method uses designated performance counters in a structured hierarchical 
approach to quickly and correctly identify dominant performance bottlenecks.” TMAM 
analysis has been successfully used for CPU performance analysis of various types of 
workloads and equally applies for use with NF applications. The methodology is 
extensively documented in Intel® Optimization Manual13 and a number of published 
papers14. The method is adopted by multiple tools including Intel® VTune and Linux 
open-source PMU-tools15, helping developers adopt this approach without going through 
intricacies of the performance monitoring architecture and performance events.  

Section 6 Compute Performance Analysis using Intel TMAM contains a primer on 
TMAM and how it applies to NF applications, followed by sample PMU-tools based 
measurements for tested NF applications and data analysis. 

4.4 Memory	Bandwidth	Consumption	

Runtime usage of system memory bandwidth is another important high-level efficiency 
metric that need to be analyzed in the context of implemented packet operations. The 
memory bandwidth utilization does not only indicate the headroom left on the memory 
channels, but also provides an important metric of per packet memory accesses.  
Table 6 shows Memory consumed in high network bandwidth scenario i.e. workloads 
running with 4Cores/8Threads. 

                                                
13 “Intel Optimization Manual” – Intel® 64 and IA-32 architectures optimization 
reference manual. 
14 Technion 2015 presentation on TMAM , Software Optimizations Become Simple with 
Top-Down Analysis Methodology (TMAM) on Intel® Microarchitecture Code Name 
Skylake, Ahmad Yasin. Intel Developer Forum, IDF 2015. [Recording]. 
15 Linux PMU-tools, https://github.com/andikleen/pmu-tools. 
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Table 6. Memory bandwidth consumption for tested NF applications. 

In most cases Memory bandwidth is close to 0 MB/s due to effective use of Intel® DDIO 
(Direct Data IO) feature. More detailed description of DDIO technology and its 
applicability to NF applications is provided in Section 8.3 Intel® Direct Data IO 
Technology (DDIO).  
Furthermore, Section 7 Memory Performance Analysis is dedicated to memory 
performance, including NF test measurements with Intel PCM pcm-memory.x tool and 
results analysis.  

4.5 I/O	Bandwidth	Consumption	

Input/Output plays a significant role in NF applications’ performance. Understanding and 
monitoring I/O behavior in the architecture is thus extremely important. Table 7 shows 
the average PCIe I/O bandwidth consumption for benchmarked NF applications. 

 
Table 7. PCIe I/O bandwidth consumption for tested NF applications with 64B Ethernet 

frames. 

For the test scenario with a fixed 64B Ethernet frame size, PCIe bandwidth is 
proportional to the packet rate.  
Number of PCIe read transactions per packet varies depending on the descriptor size the 
software chooses for the Ethernet NIC cards. For all cases except OVS-DPDK, the packet 
descriptor size is 16B, resulting in 32B of total overhead per 64B packet (16B descriptor 
for Ethernet Transmit, and 16B for Ethernet Receive). This results into 1.5x of PCIe read 
transactions per packet. OVS-DPDK software uses extended size descriptors (32B) for 
Ethernet Receive, resulting into higher PCIe read/packet rate ratio.  
PCIe write transactions/packet ratio depends both on the descriptor size as well as the 
descriptor write back policy chosen by the software. In some of the tested cases, Ethernet 
cards are programmed to write back only 1 Transmit descriptor per every 16th packet, 

4C/8T 4C/4T

Benchmarked	Workload Throughput	[Mpps] Memory	Bandwdith	[MB/s]

Dedicated	4	physical	cores	with	HyperThreading	enabled,	2	threads	per	physical	core,	8	threads	in	total	=>	4c8t
DPDK-Testpmd	L2	looping 148.3 18
DPDK-L3Fwd	IPv4	forwarding 132.2 44
VPP	L2	Cross-connect 72.3 23
VPP	L2	Switching 41.0 23
OVS-DPDK	L2	Cross-connect 31.2 40
VPP	IPv4	Routing 48.0 1484

Benchmarked	Workload
Throughput	

[Mpps]

PCIe	Write		

Bandwidth	

[MB/s]

PCIe	Read	

Bandwidth	

[MB/s]

PCIe	Write	

#Transactions/	

Packet

PCIe	Read	

#Transactions/	

Packet

Dedicated	4	physical	cores	with	HyperThreading	enabled,	2	threads	per	physical	core,	8	threads	in	total	=>	4c8t

DPDK-Testpmd	L2	looping 148.3 13,397 14,592 1.41 1.54
DPDK-L3Fwd	IPv4	forwarding 132.2 11,844 12,798 1.40 1.51
VPP	L2	Cross-connect 72.3 6,674 6,971 1.44 1.51
VPP	L2	Switching 41.0 4,329 3,952 1.65 1.51
OVS-DPDK	L2	Cross-connect 31.2 3,651 3,559 1.83 1.78
VPP	IPv4	Routing 48.0 4,805 4,619 1.56 1.50
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with the Receive descriptors being the same as for PCIe read transactions. This results in 
lower PCIe writes/packet ratio of [1B(rx_descriptor) +16B (tx_descriptor) +64B 
(packet)]/64B(packet_size) =~1.265. However, due to non-coalesced descriptor write, the 
counters round up the descriptor size to 64B, resulting in over reporting PCIe write 
bandwidth, compared to reality. 
Section 8 PCIe Performance Analysis is dedicated to PCIe I/O performance, including 
usage of Intel PCM pcm-pcie.x monitoring tool, NF test measurements and data analysis.  

4.6 Inter-Socket	Transactions	

The last part of compute system architecture to look at is the CPU core to core 
communication involving inter-socket transactions for Intel® Xeon® two- and four-
socket server configurations.  Intel Architecture is CPU cache coherent architecture, 
meaning that when CPU or I/O accesses a cache-line, the architecture ensures that it gets 
the most recent version of the cache-line. It also ensures that only one modified data copy 
exists in the system, whether it is in one or more level of core caches of either socket or 
system memory. Such operation involves snoop transactions on the Intel® QuickPath 
Interconnect (QPI), an interconnect link between the two CPU sockets. Understanding 
these transactions is important for achieving the peak performance out of a multi-socket 
system.  
All benchmarking of NF applications reported in this paper has been performed with NF 
application threads pinned to processor socket0, excluding any inter-socket transactions 
and QPI involvement in program execution. Hence no measurement data is provided in 
this version of the paper. 
Focused analysis of inter-socket transactions onto the NF application performance is 
subject to further study. 
 
 
 



                                                                                                                          

 
36 

5 Intel	x86_64	–	Performance	Telemetry	and	Tools	
Systematic, focused and repeatable performance analysis of any application requires 
availability of suitable and reliable performance telemetry points (counters) with 
associated measurements and monitoring tools. There are several commercial tools, e.g. 
Intel VTuneTM, and open source tools e.g. Linux perf, Linux pmu-tools, Intel PCM.  
This section provides overview of the open source tools. First though is a brief 
description of the underlying hardware based performance telemetry architecture used by 
those tools, to aid understanding. 

5.1 Telemetry	Points	in	Intel®	Xeon®	E5	Processor	Architecture	

For any Software applications to take advantage of CPU microarchitectures, one needs to 
know how the application is utilizing available hardware resources. One way to obtain 
this knowledge is by using the on-chip Performance Monitoring Units (PMUs). PMUs 
are dedicated pieces of logic within a CPU core that count specific Hardware events as 
they occur in the system. Examples of these events include Cache Misses and Branch 
Mispredictions. These events can be observed, counted and combined to create useful 
high-level metrics such as cycles-per-instruction (CPI) or its reciprocal equivalent 
instructions-per-cycle (IPC). 

Figure 15 below shows the performance counters available within the Intel Xeon E5-
2600 v4 series processor micro-architecture. 

 
Figure 15. High Level view of  Intel® Xen® E5 v4 Family processor Architecture. 

In traditional applications, most of the attention goes towards performance counters in 
CPU cores. However, for system level performance analysis of I/O centric applications 
like NFV, in addition to CPU cores equally important are also uncore, I/O, and Processor 
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interconnect counters. Cumulatively, there are more than one thousand performance 
monitoring events that can help understand microarchitecture activities while running an 
application. They are grouped into the following categories: 
1. CORE PMON - Core specific events monitored through Core performance counters. 

Examples include number of instructions executed, TLB misses, cache misses at 
various cache levels, branch predictions. 

2. C-BOX PMON - C-Box performance monitoring events used to track LLC access 
rates, LLC hit/miss rates, LLC eviction and fill rates, and to detect evidence of back 
pressure on the LLC pipelines. In addition, the C-Box has performance monitoring 
events for tracking MESI state transitions that occur as a result of data sharing across 
sockets in a multi-socket system. 

3. MEM PMON – Memory controller monitoring counters. There are four counters in 
the E5-2600 E5 v4 Family processor architecture which monitor activities at memory 
controller. 

4. QPI PMON - QPI counters monitor activities at QPI links, the interconnect link 
between the processors.  

Some of the Core counters are enabled only when Hyper-Threading (HT) is turned off. It 
is recommended to turn HT off in the BIOS setting when one wants to do deep dive 
analysis with all the performance monitoring infrastructure, as presented in this paper.  

5.2 Performance	Monitoring	Tools	

Number of tools and code libraries enables monitoring available performance counters 
and enabling their analysis. Some utilities like Intel VTuneTM and Linux perf top can even 
point to hot spots in the source code that cause high count of selected event.  

Here is a brief description of applicability of three open-source tools that have been used 
in this paper for performance measurements and analysis:  

• Linux Perf – a generic Linux kernel tool. It supports multiple generations of x86 and 
many other CPU architectures. Perf incorporates basic performance events for each 
architecture. Perf tool can also be used to conduct performance hot-spot analysis at 
source code level.   

• PMU-Tools – a set of open-source utilities built upon Linux Perf, providing rich 
analysis tools to a user. PMU_Tools supports download of an enhanced set of 
performance monitoring events for a particular architecture using 
(event_download.py) on top of what is available with Linux Perf. Additionally, PMU-
Tools includes powerful performance analysis tool based on the Top-down Micro-
Architecture Method (TMAM), as described in this paper. 

• PCM tool chain – PCM is another open-source tool for monitoring various 
performance counters. PCM consists of a set of utilities, each one focusing on 
specific parts of architecture including Core, Cache hierarchy, Memory, PCIe, 
NUMA. It is easy to use and great for showing high-level statistics. One of the main 
advantages of PCM tools is that one can observe variety of CPU core, CPU uncore, 
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and memory events in real time. For example, one observe in real time how IPC, LLC 
miss, memory and PCIe consumption vary with change in network loads.  

Table 8 below shows mapping of open source tools to specific performance analysis area. 
 

Analysis Area Performance Tools 

CPU Cores pmu-tools top-down analysis. 

CPU cache Hierarchy pmu-tools, pcm.x. 

Memory bandwidth pcm-memory.x, pmu-tools. 

PCIe bandwidth pcm-pcie.x 

Inter-Socket transactions pcm-numa.x, pmu-tools. 
Table 8. Mapping of performance tools to CPU architecture analysis area. 

6 Compute	Performance	Analysis	using	Intel	TMAM	

6.1 TMAM	Overview	

Analyzing and optimizing applications' performance has become increasingly hard due to 
continuously increasing processor microarchitecture complexities, Software applications 
diversity and huge volume of measurement data produced by performance tools. 

Intel Top-down Microarchitecture Analysis Methodology16 (TMAM) has been developed 
and successfully applied to address this problem. TMAM provides fast and accurate 
performance analysis of variety of workloads by employing a structured drill-down 
approach to investigate bottlenecks in out-of-order processors, while running steady 
workloads. The hierarchical top-down approach saves time, helps users to quickly 
identify bottlenecks and to focus on the most important areas for performance 
optimization. PMU-tools17 have been developed in open-source to help conduct 
performance analysis using TMAM approach.  

Before diving into TMAM performance analysis, it is worthwhile to get familiar with 
further details of Intel® Xeon® E5 v4 Family processor micro-architecture. Section 3.4 
Compute Resources Usage has already described the entire compute system and its block 
diagram in Figure 5 featuring processor cores, uncore, I/O, and interconnect system 
blocks in Intel Xeon processor architecture. Zooming into the processor core itself, 
Figure 16 below illustrates the functional units present within a Core, with the CPU core 
pipeline divided conceptually into two halves, the Frontend and the Backend. The 
Frontend part implements an in-order code execution and is responsible for fetching the 
program code represented in architectural instructions and decoding them into one or 
more low-level Hardware operations referred to as micro-operations (µOps). The µOps 

                                                
16 A Top-Down Method for Performance Analysis and Counters Architecture, Ahmad 
Yasin. In IEEE International Symposium on Performance Analysis of Systems and 
Software, ISPASS 2014, https://sites.google.com/site/analysismethods/yasin-pubs.  
17 PMU tools: https://github.com/andikleen/pmu-tools. 
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are then fed to the Backend in a process called allocation. Once allocated, the Backend 
(implementing an out-of-order execution) is responsible for monitoring when µOp’s data 
operands are available and executing the µOps in available execution unit. The 
completion of a µOp’s execution is called Retirement, and happens when results of the 
µOp’s execution are committed to the architectural state of the processor, written to CPU 
registers or written back to memory. Usually most µOps pass completely through the 
pipeline and retire, but sometimes speculatively fetched µOps may get cancelled before 
retirement – like in the case of Bad Speculation with mispredicted branches. 

 
Figure 16. Block Diagram of Intel® Xen® E5 v4 Family processor Core Architecture. 

Modern processor microarchitectures support over a thousand of events through their 
Performance Monitoring Units (PMUs). However, it is frequently non-obvious to 
determine which events are useful in detecting and fixing specific performance issues. It 
often requires an in-depth knowledge of both the microarchitecture design and PMU 
specifications to obtain useful information from raw event data. That is where the 
predefined events and metrics combined with the top-down characterization method help 
enormously, enabling conversion of the measured performance data into actionable 
information. 
From the top-down perspective, one can think of the architecture as consisting of two 
main high-level functional blocks:  
1) Frontend – responsible for fetching the program code represented in CPU 

architecture instructions and decoding them into one or more low-level hardware 
operations called µOps.  

Front	End

Back	End
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2) Backend – responsible for scheduling µOps, µOps execution and their retiring per 
original program’s order. 

The first analysis point is whether the µOps are issued to the execution pipeline. If they 
are not issued, either the architecture Frontend is the bottleneck or the Backend is the 
stalling party.  On the other hand, if µOps are issued then EITHER most of them are 
executed, completed and can be Retired OR some of them are executed, but not 
completed due to Bad Speculation and cannot get retired. Figure 17 shows a flow 
diagram for this simple analysis process.  

 
Figure 17. Logical steps in TMAM. 

The first level of TMAM break-up helps a user to focus on one or two specific domains, 
which could influence the performance the most and then drill down into the second level 
of hierarchy. The process is repeated to the deeper levels until performance issue is 
found. Figure 18 shows the first four levels of TMAM hierarchy for Intel® Xeon® E5 v4 
Family processor microarchitecture.  

Micro-Ops	Issued?

Allocation	Stall? Micro-Ops	ever	Retire?

Frontend	Bound Backend	Bound Bad	Speculation Retiring

NO

NO

NO

YES

YESYES
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Figure 18. TMAM Hierarchy 

For further detail on TMAM analysis please refer to Intel Developer Zone resources18. 
TMAM data collection and analysis can be carried out using Intel VTuneTM or PMU-
tools. Benchmark tests detailed in this paper were conducted using EMON tool (Part of 
Intel VTuneTM) for both data collection and the analysis, mainly because of availability of 
the test automation framework in the testing environment. Exactly the same data 
collection and analysis is available and can be carried out using PMU-tools. Associated 
PMU-tools command references for each of the analysis steps have been provided in 
Section 15.  Appendix: Deep-dive TMAM Analysis.   

TMAM performance analysis has been applied to the NF workloads described in this 
paper. Table 9 shows TMAM Level-1 measurements for the benchmarked CoreMark and 
NF workloads running under load on Intel® Xeon® E5-2699v4 processor, with data 
plane threads utilizing single processor core, with processor running in no-Hyper-
Threading (noHT) and then in Hyper-Threading (HT) mode.  

                                                
18 Intel Developer Zone, Tuning Applications Using a Top-down Microarchitecture 
Analysis Method, https://software.intel.com/en-us/top-down-microarchitecture-analysis-
method-win. 
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Table 9. TMAM Level-1 Analysis. 

All listed percentage-based Level 1 TMAM performance metrics add up to 100% (per 
workload type and per noHT/HT test run), representing a ratio of all pipeline slots 
executed over the measurement time. 

Initial look at these results shows some interesting patterns and differences across the 
tested workloads. 

Starting with %Retiring (ratio of pipeline slots the µOps are successfully executed and 
retired, higher value is better), the highest scores at 66.4..67.7% (HT mode) are achieved 
by CoreMark and surprisingly VPP IPv4 Routing and VPP L2 MAC Switching 
indicating that these are extremely efficient and optimized code implementations, which 
are successfully hiding cache and memory latencies while processing packets.  
Following with %Bad_Speculation (ratio of pipeline slots pre-fetching and executing 
non-useful operations, lower value is better), the clear winner is VPP (all configurations) 
and DPDK-L3Fwd, scoring values <1%. This is an extremely low value indicating that 
for these applications the core is speculatively executing the branches correctly most of 
the time, spending 99% of cycles doing useful work. Besides efficient CPU branch 
predictor architecture implementation, several other factors, such as the efficient code 
compilation favorable to branch predictor (e.g. using compiler hints likely()/unlikely()), 
and small and repeated code execution footprint play a role to make this metric small.  
Measurements of %Frontend_Bound Stalls (ratio of pipeline slots the Frontend fails to 
supply the pipeline at full capacity when there were no Backend bound stalls, lower value 
is better) and %Backend_Bound Stalls (ratio of pipeline slots the µOps are not delivered 
from µOp queue, denoted as IDQ in Figure 16, to the pipeline due to Backend being out 
of resources to accept them, lower value is better) clearly show different balance between 
both metrics for noHT and HT modes. In noHT case %Backend_Bound stalls dominate 
for all workloads, indicating the Frontend is not a pinch point. In Hyper-Thread mode this 
changes as each HT core tries to dispatch instruction to maximize the use of Backend 
resources, while also stressing the shared Frontend pipe line. This results in the aggregate 
contribution from Backend related stalls decreasing, while Frontend becoming 
increasingly a bottleneck.  

Following sections delve into further analysis of the first two levels of TMAM 
measurements, describing each category in more detail and providing related 
measurement and analysis of benchmarked NF workloads.  

TMAM	L1
Core	Pipeline	Slots

TMAM	Level-1	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT noHT HT
CoreMark 53.6 67.7 3.2 2.4 6.8 20.1 36.3 9.8
DPDK-Testpmd	L2	Loop 34.1 47.0 3.8 4.7 1.1 14.8 61.1 33.4
DPDK-L3Fwd	IPv4	Forwarding 36.9 51.8 0.6 0.8 0.9 22.0 61.6 25.4
VPP	L2	Patch	Cross-Connect 47.6 57.8 1.7 0.6 3.4 16.9 47.3 24.7
VPP	L2	MAC	Switching 52.4 66.4 1.1 0.4 2.7 15.9 43.8 17.3
OVS-DPDK	L2	Cross-Connect 44.6 57.7 7.4 3.9 10.9 26.4 37.0 12.0
VPP	IPv4	Routing 57.4 67.4 1.1 0.8 2.5 14.8 38.9 17.0

StalledNot	Stalled

%Frontend_Bound %Backend_Bound%Bad_	
Speculation

%Retiring
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6.2 %Retiring	

The first category for TMAM top level analysis is %Retiring. This metric is the measure 
of the number of µOps successfully retired and hence represents the execution efficiency.   
The Retiring ratio is calculated as follows: 

%𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔 =
𝑈𝑂𝑃𝑆_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝑅𝐸𝑇𝐼𝑅𝐸_𝑆𝐿𝑂𝑇𝑆

4 ∗ 𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
 

Equation 7. TMAM Level-1: %Retiring. 

The event UOPS_RETIRED.RETIRE_SLOTS counts the number of retirement slots used 
each clock cycle. The theoretical best-case scenario for Intel® Xeon® E5 v4 Family 
processor architecture is one with 4 µOps being retired per cycle, one on each slot. 
Clearly, this metric should be as high as possible. Since most architecture instructions 
map to single µOp, this metric is also indicative of instructions-per-cycle (IPC).  

When benchmarks are run with Hyper-Threading, each thread competes for the use of 
execution and retirement slots. As a result, increased number of µOps are retired, giving 
%Retiring ratio higher than corresponding non-Hyper-Threading cases. This explains 
higher values for HT mode reported in Table 9 above.  

Higher %Retiring ratio means more µOps are executed and retired per cycle. However, 
higher ratio does not necessarily imply that there is no room for further performance 
improvement of an application. Further optimization options include using better 
algorithms or vectorizing the code (with SSE4, AVX2 instructions), making CPU cores 
do the same work with lower number of µOps consuming less CPU clock cycles. 
Comparing benchmarked NF workloads, the highest scores at 66.4..67.7% (HT mode) 
are achieved by CoreMark and VPP IPv4 Routing and VPP L2 MAC Switching. 
Remaining workloads are 10..20% behind. For all workloads using HT improves 
%Retiring metric by 17% to 40%.  
Note that there is one subtle difference between CoreMark and benchmarked NF 
workloads. Whereas the former deals with the same set of data in L1 cache, the NF 
workloads continuously access and operate upon the new set of data written and read by 
network interface cards. High values of this metric for NF workloads indicate that they 
are not penalized by the latency of accessing dynamic data content written/read by 
external devices. This is the result of the efficient NF code implementations AND CPU 
hardware prefetchers, that when combined help hiding the cache and memory access 
latencies resulting in very high number of instructions being retired per clock.  

Retiring pipeline slots are broken further into two sub-categories called Base and 
Microcode_Sequencer. Table 10 lists TMAM Level-2 drill-down into the %Retiring 
measurements for the benchmarked CoreMark and NF workloads.  
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Table 10. TMAM Level-1: %Retiring - breakdown into Level-2 metrics. 

Listed Level-2 TMAM metrics add up to their parent Level-1 metric, representing a 
further subdivision ratio of all pipeline slots executed over the measurement time. 

6.2.1 %Retiring.Base	

%Retiring.Base metric represents ratio of pipeline slots when the CPU core was retiring 
regular µOps, the ones that did not originate from the microcode-sequencer. Software 
logic could be rewritten to improve this metric and further reduce the instruction count 
that require microcode-sequencer. Alternatively, software could also employ other 
techniques such as vectorization. 
%Retiring.Base ratio is calculated as follows: 

%	𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔. 𝐵𝑎𝑠𝑒 = 1		–		 STU.VW_XYZW
XYZW_SWWX[T.\]^

∗ %𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔	=		1	-	%	𝑅𝑒𝑡𝑖𝑟𝑒.𝑀𝑆	

Equation 8. TMAM Level-2: %Retiring.Base. 

It is clear that this metric is the dominant factor for the reported benchmarks. 
 

6.2.2 %Retiring.Microcode_Sequencer	

Certain instructions in Intel Architecture are complex and are broken into multiple µOps 
using Micro Sequencer logic. Examples of such instructions include CPUID, sine, and 
cosine. Such instructions can also potentially slow down the execution. For performance 
reasons, software implementation should minimize the use of such instructions. 

%	𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔.𝑀𝑆 =
𝐼𝐷𝑄.𝑀𝑆_𝑈𝑂𝑃𝑆

𝑈𝑂𝑃_𝐼𝑆𝑆𝑈𝐸𝐷. 𝐴𝑁𝑌
∗ %𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔 

Equation 9. TMAM Level-2: %Retiring.Microcode_Sequencer. 

High use of Micro Sequencer is usually an indication of a performance issue. However, 
some instructions, such as REP MOVSB (memory string moves), make heavy use MS, 
yet work every efficiently. It is evident from the Table 10 above, that use of micro 
sequencer logic is insignificant for the benchmarked applications.   

Retiring
Core	Pipeline	Slots

TMAM	Level-1&2	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 53.6 67.7 53.6 67.7 0 0
DPDK-Testpmd	L2	Loop 34.1 47.0 34.0 47.0 0.0 0.0
DPDK-L3Fwd	IPv4	Forwarding 36.9 51.8 36.9 51.6 0.1 0.2
VPP	L2	Patch	Cross-Connect 47.6 57.8 47.2 57.4 0.3 0.4
VPP	L2	MAC	Switching 52.4 66.4 52.1 65.7 0.2 0.7
OVS-DPDK	L2	Cross-Connect 44.6 57.7 44.3 57.4 0.4 0.3
VPP	IPv4	Routing 57.4 67.4 57.2 67.1 0.2 0.3

Not	Stalled

%Retiring %..Base %..Microcode_	
Sequencer
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6.3 %Bad_Speculation 
The second top-level category in TMAM, %Bad_Speculation, quantifies a scenario when 
the pipeline is busy fetching and executing non-useful operations.  
Intel Xeon architecture employs a sophisticated speculative branch prediction logic to 
attain high execution efficiency. It is very likely that multiple instructions are being 
speculatively executed ahead of making a decision on a conditional branch instruction. If 
the branch prediction is proven to be incorrect at the execution of the branch instruction, 
instructions that were speculatively executed never retire and the execution slots they 
used are essentially wasted. Besides, such mis-predictions also cause pipeline flushes 
consuming additional cycles, while recovering to the correct execution flow. The 
%Bad_Speculation metric accounts for both of these effects. Clearly, one would like to 
have %Bad_Speculation number as low as possible. 

Overall cycles wasted are captured as: 
%	𝐵𝑎𝑑_𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛	

= 	
((𝑈𝑂𝑃𝑆_𝐼𝑆𝑆𝑈𝐸𝐷. 𝐴𝑁𝑌	 − 	𝑈𝑂𝑃𝑆_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝑅𝐸𝑇𝐼𝑅𝐸_𝑆𝐿𝑂𝑇𝑆) 	+ 	4 ∗ 𝐼𝑁𝑇_𝑀𝐼𝑆𝐶. 𝑅𝐸𝐶𝑂𝑉𝐸𝑅𝑌_𝐶𝑌𝐶𝐿𝐸𝑆_𝐴𝑁𝑌)

4 ∗ 	𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
 

Equation 10. TMAM Level-1: %Bad Speculations. 

Table 11 below lists TMAM Level-2 drill-down into the %Bad_Speculation 
measurements for the benchmarked CoreMark and NF workloads. 

 
Table 11. TMAM Level-2: %Bad_Speculation - breakdown into Level-2 metrics. 

Based on data listed in Table 11, benchmarked workloads show very low ratio for this 
category, indicating only a small amount of cycles are wasted due to bad speculations. It 
implies that the most branch instructions are predicted correctly by the underlying 
architecture. Also, %Machine_Clears metric is less dominant than 
%Branch_Mispredicts. 

Among tested workloads, VPP scores consistently values <1% for all tested 
configurations. Same for DPDK-L3Fwd. CoreMark, OVS-DPDK, DPDK-Testpmd 
utilize pre-fetching less effectively, but still score fairly low values 2.4..4.7%. HT 
improves this metric in all cases, but DPDK-Testpmd.  

Bad_Speculation
Core	Pipeline	Slots

TMAM	Level-1&2	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 3.2 2.4 3.1 2.3 0.1 0.1
DPDK-Testpmd	L2	Loop 3.8 4.7 3.7 4.7 0.1 0.1
DPDK-L3Fwd	IPv4	Forwarding 0.6 0.8 0.4 0.7 0.2 0.1
VPP	L2	Patch	Cross-Connect 1.7 0.6 0.9 0.4 0.8 0.2
VPP	L2	MAC	Switching 1.1 0.4 0.8 0.3 0.4 0.1
OVS-DPDK	L2	Cross-Connect 7.4 3.9 7.1 3.9 0.3 0.0
VPP	IPv4	Routing 1.1 0.8 0.7 0.6 0.5 0.2

Not	Stalled

%Bad_	
Speculation

%..Branch_	
Mispredicts

%..Machine_	
Clears
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TMAM methodology classifies the %Bad_Speculation slots into the two Level-2 
performance metrics: %Branch_Mispredicts and %Machine_Clears.  

6.3.1 %Bad_Speculation.Branch_Mispredicts 
This metric tells about the percentage of wasted cycles due to Branch Mispredicts events. 
Understanding this counter helps make the program control flow friendlier to the branch 
predictor. 
%	𝐵𝑟𝑎𝑛𝑐ℎ_𝑀𝑖𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠

= 	
𝐵𝑅_𝑀𝐼𝑆𝑃_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝐴𝐿𝐿_𝐵𝑅𝐴𝑁𝐶𝐻𝐸𝑆_𝑃𝑆

	𝐵𝑅_𝑀𝐼𝑆𝑃_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝐴𝐿𝐿_𝐵𝑅𝐴𝑁𝐶𝐻𝐸𝑆_𝑃𝑆 + 	𝑀𝐴𝐶𝐻𝐼𝑁𝐸_𝐶𝐿𝐸𝐴𝑅𝑆. 𝐶𝑂𝑈𝑁𝑇
∗ (%𝐵𝑎𝑑	𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛)	

Equation 11. TMAM Level-2: %Bad_Speculation.Branch_Mispredicts. 

The event BR_MISP_RETIRED.ALL_BRANCHES_PS counts the number of branches that are 
incorrectly predicted as the branch target.   

All tested workloads exhibit low values for %Branch_Mispredicts, well below 8%. 
If above %Branch_Mispredicts ratios is more than 5%, hot-spot profiling for 
%Bad_Speculation and above two events is recommended. The tools such as Linux Perf 
or VTuneTM can help rearrange the logic to help minimize these events. 

6.3.2 %Bad_Speculation.Machine_Clears 
The event MACHINE_CLEARS.COUNT counts the number of times the pipeline is cleared 
due to various Machine Clear events. The prominent causes of Machine Clear event 
include memory ordering conflict and self-modifying code. For example, an ordering 
conflict can occur when a snoop request is issued and the machine is uncertain if memory 
ordering will be preserved as another core is in the process of modifying the same data.  

%	𝑀𝑎𝑐ℎ𝑖𝑛𝑒_𝐶𝑙𝑒𝑎𝑟𝑠 = 	
𝑀𝐴𝐶𝐻𝐼𝑁𝐸_𝐶𝐿𝐸𝐴𝑅𝑆. 𝐶𝑂𝑈𝑁𝑇

	𝐵𝑅_𝑀𝐼𝑆𝑃_𝑅𝐸𝑇𝐼𝑅𝐸𝐷. 𝐴𝐿𝐿_𝐵𝑅𝐴𝑁𝐶𝐻𝐸𝑆_𝑃𝑆 + 	𝑀𝐴𝐶𝐻𝐼𝑁𝐸_𝐶𝐿𝐸𝐴𝑅𝑆. 𝐶𝑂𝑈𝑁𝑇
∗ (%𝐵𝑎𝑑	𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛)	

Equation 12. TMAM Level-2: %Bad_Speculation.Machine_Clears. 

Since the benchmarked NF workloads employ run-to-completion packet processing, the 
participating cores are not transferring data between themselves. Hence, ordering conflict 
is not expected for any of the workloads. Furthermore, these workloads do not use self-
modifying code. These two main factors make %Machine_Clears value low and optimal. 

6.4 %Frontend_Bound	Stalls	

The Frontend of the pipeline on recent Intel Xeon E5 processor microarchitectures can 
allocate up to four µOps per cycle, while the Backend can retire four µOps per cycle. 
%Frontend bound stalls denote the ratio of pipeline slots the Frontend fails to supply the 
execution pipeline at full capacity and delivers less than 4 µOps per cycle, while the 
Backend is still requesting µOps. Refer to Section 6.1 TMAM Overview and Figure 16 for 
details on the Frontend and Backend functionality. 

The Frontend_Bound category covers also several other types of pipeline stalls. While it 
is less common for the Frontend portion of the pipelines to become the application's 
bottleneck, there are some cases where the Frontend can contribute in a significant 
manner to machine stalls.  

%Frontend_Bound stalls metric is calculated using the following formula: 
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%	𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑	 = 	
𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑂𝑅𝐸

4 ∗ 𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

Equation 13. TMAM  Level-1: %Frontend_Bound. 

The IDQ_UOPS_NOT_DELIVERED.CORE counts the number of issue pipeline slots at every 
core clock when no µOp was delivered from the Frontend to the Backend while there is 
no Backend stall. Higher ratio means that Frontend of the pipeline is delivering less than 
4 uops when Backend is demanding µOps, but cannot get enough. In all of these cases 
execution engines are starved due to Frontend stalls.  
In TMAM hierarchical approach, %Frontend_Bound can be divided further into two 
Level-2 metrics – %Frontend_Latency and %Frontend_Bandwidth, as described in the 
next two sections. 

Table 12 below shows the TMAM Level-2 drill-down into the %Frontend_Bound Stalls 
measurements for the benchmarked CoreMark and NF workloads.  

 
Table 12. TMAM Level-1: %Frontend_Bound Stalls - breakdown into Level-2 metrics. 

Table 12 reveals the benchmarked CoreMark and NF workloads are not Frontend bound 
for non-Hyper-Threading cases. In other words, Frontend is always ready to deliver µOps 
when the Backend asks for them. When tests are carried out with Hyper-Threading, the 
execution engine demands increased number of µOps pertaining to the software running 
on both hyper-threads of a core. Increased pressure on the Frontend to provide more 
µOps to the Backend results in higher number of Frontend stalls.  

For all benchmarks, %Frontend metric is less than 11% for non-HT mode and less than 
26% for HT mode. For well optimized workloads Frontend bound stalls are expected to 
be below 30%, and optimizing it further down is unlikely to yield any substantial 
performance improvements. All benchmarked applications fall into this category with 
VPP IPv4 Routing and DPDK-Testpmd L2 Loop scoring values <15%.  

Front-End
Core	Pipeline	Slots

TMAM	Level-1&2	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 6.8 20.1 1.9 11.5 4.9 8.5
DPDK-Testpmd	L2	Loop 1.1 14.8 0.6 12.3 0.5 2.6
DPDK-L3Fwd	IPv4	Forwarding 0.9 22.0 0.4 16.0 0.4 6.1
VPP	L2	Patch	Cross-Connect 3.4 16.9 1.7 13.7 1.6 3.2
VPP	L2	MAC	Switching 2.7 15.9 1.6 11.7 1.1 4.2
OVS-DPDK	L2	Cross-Connect 10.9 26.4 3.4 16.4 7.5 10.0
VPP	IPv4	Routing 2.5 14.8 1.4 11.8 1.1 2.9

Stalled
%Frontend_	

Bound
%..Frontend_	

Latency
%..Frontend_	
Bandwidth
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For more information please refer to Section B 5.7 in Intel® 64 and IA-32 Architectures 
Optimization Reference Manual19. 

6.4.1 %Frontend.Frontend_Latency  
This metric indicates how often a CPU core was stalled due to latency issues at the 
Frontend of the pipeline. It includes the Frontend stalls caused by Instruction-cache 
misses, iTLB20 misses, branch mispredictions, and those resulting from µOps delivery 
switching back and forth between decoded I-Cache and legacy decoder. In such cases, the 
Frontend delivers no µOps for some number of clocks while Backend was requesting 
them. 

%	𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐿𝑎𝑡𝑒𝑛𝑐𝑦	 = 	
𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑌𝐶𝐿𝐸𝑆_0_𝑈𝑂𝑃𝑆_𝐷𝐸𝐿𝐼𝑉. 𝐶𝑂𝑅𝐸

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

Equation 14. TMAM Level-2:  %Frontend_Bound.Frontend Latency. 

The event IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE counts the core 
cycles in which no µOp is delivered from the Frontend to the Backend in any of the 4 
pipeline slots while there was no Backend stall. 
Results in Table 12 above indicate that both DPDK and VPP code has been written in a 
way to minimize Instruction Cache and iTLB misses. The respective next level down 
TMAM performance event counts confirm these misses are indeed negligible. In addition 
as the %Branch_Mispredicts metric is also negligible. This indicates that it is the back 
and forth switching between decoded I-Cache and legacy decoder are the main source of 
higher Frontend Latency metric values.  
6.4.2 %Frontend_Bound.Frontend_Bandwidth 

This metric quantifies the fraction of slots a logical core was stalled due to Frontend 
bandwidth issues.  For example, inefficiencies at the instruction decoders, or code 
restrictions for caching in the DSB21 (decoded µOps cache) are categorized under 
%Frontend_Bandwidth. In such cases, the Frontend typically delivers non-optimal 
amount of µOps to the Backend (i.e. less than four per clock cycle in Intel® Xeon ® E5 
v4 Family microarchitecture). 
%	𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ	

= 	
(𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑂𝑅𝐸	– 	4 ∗ 𝐼𝐷𝑄_𝑈𝑂𝑃𝑆_𝑁𝑂𝑇_𝐷𝐸𝐿𝐼𝑉𝐸𝑅𝐸𝐷. 𝐶𝑌𝐶𝐿𝐸𝑆_0_𝑈𝑂𝑃𝑆_𝐷𝐸𝐿𝐼𝑉. 𝐶𝑂𝑅𝐸)

4 ∗ 	𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

Equation 15. TMAM Level-2: %Frontend_Bound.Frontend Bandwidth. 

%Frontend Bandwidth values listed for tested workload in Table 12 are very low and 
should not cause any major impact on performance. Optimal code is expected to yield 

                                                
19 Intel® 64 and IA-32 Architectures Optimization Reference Manual - 
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-
architectures-optimization-manual.html  
20 iTLB -  Translation Look Aside Buffer for Instructions. This high speed on-chip 
SRAM that caches logical to physical address transaction entries for instruction space. 
21 DSB - Decoded Stream Buffer, caches a small set of µOps instructions after decoding. 
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values below or around 10%, and all benchmarked workloads meet this criterion. Values 
higher than 10% could be a cause of concern and usually call for further investigation and 
optimization. 

6.5 %Backend_Bound	Stalls	

As noted previously, the Backend can retire up to four µOps per cycle in Intel® Xeon® 
E5 processor microarchitecture. The %Backend bound stalls denote the slots where the 
µOps are not delivered from µOp queue (IDQ) to the execution pipeline because the 
Backend did not have free resources to accept them.  

The majority of un-optimized applications have a high value of %Backend Bound. 
Resolving Backend issues is often about resolving sources of load and store latencies that 
cause µOp retirement to take longer than necessary. 

A simple formula for %Backend bound stall is: 
%𝐵𝑎𝑐𝑘𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑 = 	1 − (%𝐹𝑟𝑜𝑛𝑡𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑 + %𝐵𝑎𝑑_𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 + %𝑅𝑒𝑡𝑖𝑟𝑖𝑛𝑔) 

Equation 16. TMAM Level-1: %Backend_Bound. 

Table 13 below lists the TMAM Level-2 drill-down into the %Backend_Bound Stalls 
measurements for the benchmarked CoreMark and NF workloads. 
%Backend_Bound stalls are further divided into two distinct categories: %Memory 
Bound and %Core Bound. 

 
Table 13. TMAM Level-1: %Backend_Bound Stalls - breakdown into Level-2 metrics. 

At the high-level, the Backend bound measurements show high values for all noHT 
cases. CoreMark, which operates on L1 cache only, is among the lowest for this metric, 
closely followed by VPP IPv4 routing and OVS-DPDK L2 Cross-Connect. DPDK-
Testmpmd L2 Loop and DPDK-L3Fwd show the highest degree of stalls in noHT case. 
When workloads run in HT mode, the metric improves drastically as one thread can 
continue to execute in parallel while the sibling one is waiting either for memory systems 
and core execution unit to allocate more resources. 

6.5.1 %Backend_Bound.Memory_Bound	

%Memory bound metric corresponds to the stalls pertaining to accesses to the memory 
system i.e. cache hierarchy, system memory, and store buffers. The misses at various 
levels of caches are usually the main contributors to this category. The formula for 

Back-End	Bound
Core	Pipeline	Slots
TMAM	Level-1&2	Metrics
Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 36.3 9.8 8.5 3.2 27.8 6.4
DPDK-Testpmd	L2	Loop 61.1 33.4 37.1 19.6 24.0 13.8
DPDK-L3Fwd	IPv4	Forwarding 61.6 25.4 37.5 14.5 24.1 10.9
VPP	L2	Patch	Cross-Connect 47.3 24.7 24.4 14.3 22.9 10.3
VPP	L2	MAC	Switching 43.8 17.3 19.3 8.9 24.6 8.3
OVS-DPDK	L2	Cross-Connect 37.0 12.0 15.2 6.2 21.8 5.7
VPP	IPv4	Routing 38.9 17.0 18.3 8.8 20.6 8.2

%Backend_Bound %..Memory %..Core
Stalled



                                                                                                                          

 
50 

counting %Memory bound is a bit complex, involving a number of conditional 
statements, and can be found in PMU-tools scripts bdx_server_rations.py22.  

%Memory_Bound stalls can be further drilled down to %L1_Bound, %L2_Bound, 
%L3_Bound (Last Level Cache bound), %System_Memory_Bound, and %Store_Bound.  

Table 14 below lists further break-down of %Backend_Bound.Memory_Bound Level-2 
metric into the Level-3 constituent measurements for the benchmarked CoreMark and NF 
workloads.  

 
Table 14. TMAM  %Backend_Bound.Memory_Bound - further breakdown statistics. 

Note that %L1_Bound, %L2_Bound and %L3_Bound metrics, unlike other described 
TMAM metrics, are calculated by taking the ratio of the number of clocks consumed for 
accessing L1/L2/L3 caches, System_Memory and Store units) to the core 
(unhalted/working) clocks. There is no direct relation between these metrics and 
%Backend_Bound.Memory metric, hence the metrics do not add up.  
Efficient utilization of CPU core cache hierarchy is extremely important, as it enables 
hiding the latency of accessing DRAM memory. Functionality offered by core cache 
hierarchy is analogous to fast memory (e.g. SRAM) used in purpose-built network 
forwarding processors to deliver high-speed data plane performance for  network 
applications. 

6.5.1.1 %Backend_Bound.Memory_Bound.L1_Bound	

The metric %L1 bound represents the percentage of cycles for which a core is stalled to 
access data present in the L1 cache. Normally access to L1 cache has the lowest latency. 
However, a core may encounter higher latency in some cases such as a load was blocked 
on the older stores, DTLB miss, and so on. 

%𝐿1_𝐵𝑜𝑢𝑛𝑑	 = 	
(𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝑀𝐸𝑀_𝐴𝑁𝑌	– 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿1𝐷_𝑀𝐼𝑆𝑆)

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
 

Equation 17. TMAM Level-3: Backend_Bound.Memory_Bound.L1_Bound. 

The event CYCLE_ACTIVITY.STALLS_MEM_ANY counts the core cycles while 
memory subsystem (any level of cache or memory) has an outstanding load.  
The event CYCLE_ACTIVITY.STALLS_L1D_MISS counts the core cycles while L1 
cache miss demand load is outstanding (data is served from sources other than L1 cache). 

                                                
22 PMU-tools, bdx_server_rations.py - https://github.com/andikleen/pmu-
tools/blob/master/bdx_server_ratios.py. 

Back-End	Memory
Core	Pipeline	Slots

TMAM	Level-2&3	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT noHT HT noHT HT noHT HT
CoreMark 8.5 3.2 14.1 19.1 0 0 0 0.1 0 0.3 0 0
DPDK-Testpmd	L2	Loop 37.1 19.6 5.4 9.1 5.4 6.9 7.9 14.4 0.0 0.0 37.6 22.6
DPDK-L3Fwd	IPv4	Forwarding 37.5 14.5 7.8 10.7 1.8 3.6 12.3 16.5 0.0 0.0 25.9 13.6
VPP	L2	Patch	Cross-Connect 24.4 14.3 4.2 11.5 0.0 0.0 15.7 16.9 0.0 0.0 25.4 19.5
VPP	L2	MAC	Switching 19.3 8.9 3.7 12.0 0.0 0.0 14.6 14.6 0.0 0.0 14.7 9.3
OVS-DPDK	L2	Cross-Connect 15.2 6.2 5.1 12.1 0.3 0.9 10.7 14.9 0.0 0.0 13.0 7.1
VPP	IPv4	Routing 18.3 8.8 3.9 10.9 0.0 0.0 12.6 12.9 0.0 0.0 16.4 10.9

%..Store_	Bound%..System_	
Memory_Bound

Stalled

%..L3_Bound%Backend_	
Bound.Memory

%..L1_Bound %..L2_Bound
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Note that idle latency (only one outstanding read at a time) for accessing L1 cache is 4 to 
5 cycles for E5 Xeon® processor architecture.  

6.5.1.2 %Backend_Bound.Memory_Bound.L2_Bound	

The metric %L2 bound denotes percentage of cycles a core stalls while loading data 
which was present in L2 cache.  

%𝐿2_𝐵𝑜𝑢𝑛𝑑	 = 	
(𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿1𝐷_𝑀𝐼𝑆𝑆	– 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿2𝐷_𝑀𝐼𝑆𝑆)

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
 

Equation 18. TMAM Level-3: Backend_Bound.Memory_Bound.L2_Bound. 

The event CYCLE_ACTIVITY.STALLS_L2D_MISS counts the core cycles while L2 
cache miss demand load is outstanding. Note that idle latency (only one outstanding read 
at a time) for accessing L2 cache is 12 cycles for E5 Xeon® processor architecture. 

This metric is zero for all CoreMark and all VPP configurations, and close to zero for 
all other benchmarked workloads. This implies that either the cores are not accessing data 
present in L2 cache, or cores are accessing data residing in L2 cache but they do not 
encounter stalls, as  hardware and/or software prefetchers hide the L2 cache access 
latencies. 

6.5.1.3 %Backend_Bound.Memory_Bound.L3_Bound	

The metric %L3_Bound denotes percentage of cycles the cores stall, while loading data 
that was present in L3 cache (LLC) or contented with the sibling core.  
 

	𝐿3_𝐻𝑖𝑡_𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	 =
MEM_LOAD_UOPS_RETIRED. L3_HIT

MEM_LOAD_UOPS_RETIRED. L3_HIT + 	7 ∗ MEM_LOAD_UOPS_RETIRED. L3_MISS
 

 

%𝐿3_𝐵𝑜𝑢𝑛𝑑	 =
𝐿3_𝐻𝑖𝑡_𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌. 𝑆𝑇𝐴𝐿𝐿𝑆_𝐿2𝐷_𝑀𝐼𝑆𝑆	

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
 

Equation 19. TMAM Level-3: Backend_Bound.Memory_Bound.L3_Bound. 

The event MEM_LOAD_UOPS_RETIRED.L3_HIT counts the Retired load uops with 
L3 cache hits as data sources.  

The event MEM_LOAD_UOPS_RETIRED.L3_MISS counts the Retired load uops with 
L3 cache miss as data sources.  

Note that idle latency for accessing LLC is ~40 cycles on E5 Xeon processor 
architecture.   

Clearly, CoreMark application is not L2, L3 cache and System Memory bound since it 
executes from L1 cache and its complete data footprint fits into L1 cache. In contrast, all 
NF benchmarked workloads exhibit higher percentage in the %L3 bound metric 
compared to %L1, %L2. This indicates that cores spend more cycles while accessing L3 
(LLC) cache. As it will be explained later, NF applications, by making effective use the 
DDIO technology, read and write packets and descriptors from LLC rather than System 
memory due to the effective use of DDIO technology. The stalls encountered while 
accessing L3 are reflected in the %L3 bound  metric.   
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DDIO technology is described and its applicability discussed later in this paper in Section 
8 PCIe Performance Analysis. 

6.5.1.4 %Backend_Bound.Memory_Bound.System_Memory	

This metric indicates how often a core was stalled while accessing external memory.  
Note that idle latency (measured when a core issues only one outstanding memory read 
request at a time) for accessing memory cache is in range of 140+ cycles for E5 Xeon® 
processor architecture. 

%𝑆𝑦𝑠𝑡𝑒𝑚_𝑀𝑒𝑚𝑜𝑟𝑦_𝐵𝑜𝑢𝑛𝑑	 =
(1 − 	𝐿3_𝐻𝑖𝑡_𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 	∗ 	𝐶𝑌𝐶𝐿𝐸_𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌 𝑆𝑇𝐴𝐿𝐿_𝐿2𝐷𝑀𝐼𝑆𝑆

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
 

Equation 20. TMAM Level-3: Backend_Bound.Memory_Bound.System_Memory. 

Owing to effective use of DDIO by the benchmarked NF applications, the metric 
%System_Memory Bound is close to zero. The LLC essentially acts as a fast SRAM to 
help exchange packets between Ethernet ports and the cores at high rate. It logically 
serves the same purpose as the multiple fast SRAMs employed in the purpose-built 
network processors or ASICs.  

6.5.1.5 %Backend_Bound.Memory.Store_Bound	

The Store bound category indicates the fraction of cycles where store buffers are full. In 
out-of-order architecture, the store operations are executed after the retirement of store 
instructions. Note that the pressure on store buffers does not necessarily means execution 
stalls. However, such saturation of Store buffers may cause low utilization of the 
execution ports. 
 

%𝑆𝑡𝑜𝑟𝑒_𝐵𝑜𝑢𝑛𝑑	 =
𝑅𝐸𝑆𝑂𝑈𝑅𝐶𝐸_𝑆𝑇𝐴𝐿𝐿𝑆. 𝑆𝐵

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
 

Equation 21. TMAM Level-3: Backend_Bound.Memory_Bound.Store_Bound. 

The event RESOURCE_STALLS.SB counts the cycles stalled due to no store buffers 
available. 
The possible reasons behind store buffers saturations include frequent false sharing of 
data between the cores, higher store latency, DTLB misses on stores, store data crossing 
cacheline boundary. For DPDK Testpmd L2 loop, DPDK-L3fwd IPv4 Forwarding, 
and VPP L2 Patch Cross-Connect workloads, this metric from noHT case is unusually 
high (>25%). The exact cause behind this has not been determined. 

6.5.2 %Backend_Bound.Core	Bound	

%Core bound category corresponds to the execution starvation or sub-optimal utilization 
of execution ports. It represents the pipeline slots fraction where the core is the bottleneck 
for non-memory related situations. This metric can be calculated as follows: 

%𝐶𝑜𝑟𝑒_𝐵𝑜𝑢𝑛𝑑 = %𝐵𝑎𝑐𝑘𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑 − %𝐵𝑎𝑐𝑘𝑒𝑛𝑑_𝐵𝑜𝑢𝑛𝑑.𝑀𝑒𝑚𝑜𝑟𝑦 
Figure 19. TMAM Level-3:  %Backend_Bound.Core Bound. 
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Table 15 below lists further break-down of %Backend_Bound.Core bound Level-2 metric 
into the Level-3 constituent measurements for the benchmarked CoreMark and NF 
workloads.  
The metric %Divider denotes the fraction of cycles in which the Divider unit (depicted as 
Port0 exec unit in Figure 15) was active executing divide operations.  Since none of the 
benchmarks are using heavy arithmetic divide functions, the contribution from this metric 
is negligible.  
The metric %Ports_Utilization represents fraction of cycles where the performance was 
limited due to core compute stalls other than divider operations or memory stalls. Higher 
value denotes lack of instruction level parallelism. Heavy dependency among the 
contiguous instructions hampering parallel execution of instructions in the execution 
units would drive high values of this metric. In addition, any code sequence 
oversubscribing certain execution unit (other than the divider) would also contribute to 
this metric.  

 
Table 15. TMAM Level-2: %Backend Core Bound - further breakdown statistics. 

The causes behind higher %Ports_Utilization metric are not easy to pin point. In case of 
CoreMark and OVS-DPPK L2 Cross-connect with cores running in noHT mode, it is 
likely that higher counts against this metric are caused by the dependent instructions. 
Hyper-Threading does help reducing this count due to instruction level with two threads. 
It is interesting to note that Hyper-Threading for CoreMark is not improving this metric 
as much as other workloads. In this case, it is likely that oversubscribing of some 
execution unit is contributing to the core execution stalls. TMAM analysis at deeper 
levels could help understand the issue. Common best practice is to investigate 
%Ports_Utilization metric further, if it scores values of 25% or higher. 
Core bound issues could be mitigated through better code generation through compiler. 
For example, compiler optimization flags could avoid sequence of dependent arithmetic 
instructions, could avoid divider stalls, and so on. On the other hand, software could be 
employing vectorization help mitigate the core stalls.   
  

Backe-End	Core
Core	Pipeline	Slots

TMAM	Level-2&3	Metrics

Processor	Mode:	noHT,	HT noHT HT noHT HT noHT HT
CoreMark 27.8 6.4 0 0 46.2 36.1
DPDK-Testpmd	L2	Loop 24.0 13.8 0.0 0.0 36.4 21.2
DPDK-L3Fwd	IPv4	Forwarding 24.1 10.9 0.0 0.0 30.7 24.0
VPP	L2	Patch	Cross-Connect 22.9 10.3 0.4 0.5 37.9 24.3
VPP	L2	MAC	Switching 24.6 8.3 0.2 0.2 37.0 25.9
OVS-DPDK	L2	Cross-Connect 21.8 5.7 0.0 0.0 42.0 25.7
VPP	IPv4	Routing 20.6 8.2 0.2 0.3 32.1 24.4

%Backend_	
Bound.Core

%..Divider %..Ports_	
Utilization

Stalled
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6.6 TMAM	Measurements	–	Conclusions	

TMAM provides a systematic performance characterization of the benchmarked 
workloads. Figure 20 below shows the summary of TMAM Level-1 metrics’ distribution 
and IPC for all benchmarked applications for both noHT (no Hyper-Threading enabled) 
and HT (Hyper-Threading enabled) cases. 

 
 

 
Figure 20. TMAM Level-1 Summary. 
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%Retiring: reflects the ratio of core pipeline slots the µOps are successfully executed 
and retired, relative to the maximum possible, higher value is better.  

• In noHT mode, two tested workloads have low scores of less than 44%, DPDK-
Testpmd L2 Loop and DPDK-L3Fwd IPv4 Forwarding. Compared to other NF 
workloads, they implement minimal packet processing focusing mainly on packet 
I/O operations. Packet I/O operations are Backend bound since a CPU core is 
mostly waiting for data written by NICs, making %Backend_bound stalls metric 
dominating for these two applications.  

• In HT mode, the highest scores close to 70% are achieved by CoreMark and 
surprisingly VPP IPv4 Routing and VPP L2 MAC Switching. This clearly 
indicates not only extremely efficient and disciplined code execution, but also 
optimized code implementation, that is successfully hiding cache and memory 
latencies while processing packets.  

• In general, both out-of-order execution and efficient code implementation play 
roles in getting %Retiring metric relatively high. It increases in Hyper-Threading 
mode indicating more instructions are being executed and work done per CPU 
core clock cycle. IPC (#instr/cycle) closely follows this metric very closely as 
expected, with CoreMark and VPP IPv4 Routing scoring highest values, 3.1 
and 2.8, respectively.  

%Bad_Speculation: represents the ratio of core pipeline slots pre-fetching and executing 
non-useful operations, lower value is better. 

• This metric is insignificant for all workloads, with lowest values <1% measured 
for VPP (all configurations) and DPDK-L3Fwd.  

• The efficient branch predictor unit in the Intel® Xeon® E5 v4 Family processor 
architecture plays a vital role in keeping this metric at a low value. In addition, the 
appropriate use of compiler hints in the VPP and DPDK source code help 
generate branch predictor friendly binaries.    

%Frontend_Bound: captures the ratio of core pipeline slots the Frontend fails to supply 
the pipeline at full capacity, while there are no backend stalls, lower value is better. 

• In noHT  mode , the metric is relatively low indicating that the Frontend is ready 
most of the time to supply µOps when the Backend is ready to accept them.  

• In HT mode, the metric increases compared with noHT case, as the number of 
instructions being issued increase with HT. The lowest values are measured for 
VPP IPv4 Routing and DPDK-Testpmd L2 Loop scoring values <15%. OVS-
DPDK measured >26%. However, the percentage contribution for all tested 
applications is still below the threshold of 30% and as such not cause of concern. 
In all the cases, the main contributor to this metric is the Frontend latency. The 
main cause of Frontend latency is attributed to the wasted cycles due to back and 
forth transition between legacy and decoded I-Cache while delivering the µOps. 

%Backend_Bound: represents the ratio of core pipeline slots the µOps are not delivered 
from µOp queue to the pipeline due to Backend being out of resources to accept them, 
lower value is better. 
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• In noHT mode, the metric values are high as all benchmarked workloads 
experience stalls caused by the loads from various levels of caches and store 
operations, and underuse of execution ports. CoreMark, which operates on L1 
cache only, is among the lowest for this metric, closely followed by VPP IPv4 
Routing and OVS-DPDK L2 Cross-Connect. DPDK-Testmpmd L2 Loop and 
DPDK-L3Fwd IPv4 Forwarding show the highest degree of stalls in noHT 
mode. 

• In HT mode, the metric values get substantially reduced, due to parallel thread 
execution and threads balancing the use of execution resources. In addition due to 
pipelining of load requests from both threads, average cache access latency goes 
down. CoreMark scores lowest value here, due to its operation only L1 cache. It 
is closely followed by OVS-DPDK L2 Cross-connect, VPP IPv4 Routing and 
VPP L2 MAC Switching, all scoring <20%.          

• This metric is important to understand since it reveals the penalty associated while 
accessing various levels of cache hierarchy and system memory, and store 
operations. Besides, it captures the possible inefficiency in the executions of 
µOps. Higher value of this metric negatively impacts %Retiring metric and hence 
the IPC.  

• The %System_memory utilization (component %Backend_bound metric) for all 
benchmarked workloads is zero, unlike for many other benchmarks and 
application workloads. This simply means that all memory references are served 
by various levels of caches rather than memory. This is due to the optimal use of 
DDIO, heavy use of vectorization, and software pre-fetching that all help hide 
cache and memory latencies.  

In summary, TMAM analysis provides a good and fairly straightforward performance 
measurement and analysis methodology to systematically assess levels of Software 
application optimization, and adapts very well to Network Function workloads. In 
addition to helping to identify any system bottlenecks across the Software-Hardware 
stack running NF workloads, it also allows for a fairly granular performance and 
efficiency comparison between those stacks when under network service load. 

7 Memory	Performance	Analysis	

After the core compute complex, system memory is the second most important sub 
systems in the platform architecture driving an application level performance. For most 
dedicated networking and general-purpose architectures, the system memory acts as a 
central agent facilitating interactions between cores and I/O devices. For example, even 
simple packet routing operation involves at least four interactions with the system 
memory: i) NIC writes an incoming packet to system memory, ii) core reads the packet 
header from system memory, iii) core modifies and writes it back to memory, and finally, 
iv) the NIC reads it from memory for packet transmission. The similar set of operations 
are needed for processing NICs’ descriptors. In essence, routing a packet could result into 
minimum 5-to-8 operations to system memory. If small packets (64B size) are routed at 
rate of 100 Million Packet/s, the routing application could easily consume system 
memory bandwidth in access of 5x64x100 Mpps = 32,000 MBytes/s. Even though 
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features like Direct Data IO technology (explained in the next section) alleviate number 
of operations to memory, monitoring system memory characteristics is still crucial for 
understanding possible stalls encountered by both CPUs and PCIe devices, and tuning the 
applications for optimum memory bandwidth usage.  

The memory performance characteristics are measured with two metrics – system 
memory bandwidth and latency of memory accesses. The following sub sections delve 
into these aspects.  

7.1 Monitoring	Memory	Bandwidth	using	pcm-memory.x	

The PCM toolchain includes pcm-memory.x utility which provides a holistic view of 
ongoing-memory bandwidth usage in real-time of Intel® Xeon® E5 processor series 
architecture. The pcm-memory.x utility uses Performance Monitoring Counters 
associated with the memory controllers. These counters count all the memory 
transactions including the ones originated from CPU Cores and PCIe devices. In addition 
they also count many other memory transactions generated automatically by the 
architecture, such as memory reads for TLB page walk, RFOs (memory read transactions 
for Read For Ownership by core). The memory bandwidth reported by pcm-memory.x is 
thus the sum of all the traffic observed at the system memory channels and hence reflects 
the true loading on the memory channels. 
Figure 21 below shows an example output of pcm-memory.x while the VPP router 
application is forwarding 1518 Byte packets. 

 
Figure 21. Output of pcm-memory.x utility. 

The following four metrics are important to observe in the pcm-memory.x output: 

• Aggregate memory bandwidth consumption (shown as Node and System 
Throughput in above figure): This metric gives high level view of system wide 
memory bandwidth consumption and is an important indicator of available memory 
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bandwidth headroom left on the memory channels. Assuming that available memory 
bandwidth on a single socket Intel® Xeon® E5-2699 v4 processor is ~70 GBytes/s, 
the above example shows that only ~17% of that is consumed and there is still ample 
headroom left on memory system. This metric not only implies the current 
application is not memory bandwidth bound, but it also indicates that there is an 
opportunity of running other application in parallel to leverage the unused memory 
bandwidth. As memory bandwidth usage increases, memory latencies seen by both 
Cores and PCIe devices gradually rise. Such increases in latency often affect 
application level performance. However, relationship between increase in memory 
latency and degradation in performance is usually non-linear. Nevertheless, the goal 
for the performance optimization should be to reduce memory bandwidth 
consumption as much as possible. The use of DDIO is one such software optimization 
technique which could minimize memory bandwidth consumption for NF 
applications. 

• Distribution of traffic across multiple DIMMs (as shown as Mem Ch 0,1,4,5 
Reads, Writes): For many networking applications, the memory controllers are 
subjected to large amount of concurrent memory accesses from multiple cores in CPU 
complex and PCIe agents in IO complex. These memory accesses are often short (64 
to 512 Bytes) and at random physical addresses. Such address patterns could result 
into frequent time-consuming page open/close operations on DRAM and hence could 
potentially degrade DRAM throughput. A well-designed memory controller would 
spread system addresses uniformly across all memory channels, and across ranks and 
bank in DRAM so to minimize page open/close operations as well as to reduce the 
bias against certain address patterns.  This metric shows whether memory bandwidth 
consumption is fairly distributed across all memory channels or not.  

• NUMA (Non-Uniform Memory Access) affinity: Achieving an optimal application 
level performance in a dual or multiple processor socket configuration is often a 
challenge, especially when it involves heavy use of external devices. An ideal NUMA 
optimized application would use cores, PCIe, and memory resources only on one 
socket without accessing any of the resources on the other socket(s). A quick way to 
check NUMA awareness of an applications is to run it on the cores one socket and 
verify that memory bandwidth consumption (as shown by PCM-memory.x output) on 
the other socket is close to zero.  

• Memory Read vs. Write Ratio: The statistics on Memory Read and Write 
bandwidth often help understand type of operations performed by the cores and PCIe 
devices. If these numbers are not in accordance with the application code path, tools 
like Linux “perf top” could be used to debug possible causes of unintended accesses.  
Besides, Intel Xeon Architecture employs various kind of hardware prefetchers to 
hide memory latency. In some cases, these prefetchers may end up reading memory 
locations which are not used by applications, thereby wasting memory bandwidth. In 
such cases, it would be desirable to turn off various hardware prefetchers, rerun the 
application, and recheck the performance and memory bandwidth. 
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7.2 Monitoring	Memory	Latency	

One of the most common reasons behind sub-optimal IPC is the execution stalls caused 
by data/code misses at all levels of caches resulting in system memory reads. Note that 
core to memory latency is never a single value. In complex applications with multiple 
cores and PCIe devices accessing system memory, an individual core would experience a 
varied degree of memory latencies depending on the amount of concurrent traffic 
generated by itself and other agents. Measuring core to memory latency under concurrent 
loads is thus essential to understand the severity of execution stalls.  

The loaded or dynamic memory latency can be expressed in the following way: 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑀𝑒𝑚𝑜𝑟𝑦_𝐿𝑎𝑡𝑒𝑛𝑐𝑦	(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑤𝑖𝑡ℎ𝑖𝑛	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 	

= 	
								∑	𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑀𝑒𝑚𝑜𝑟𝑦_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑒𝑎𝑐ℎ_𝐶𝑦𝑐𝑙𝑒

#𝑅𝑒𝑡𝑖𝑟𝑒𝑑_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
		

Equation 22. System Memory Latency.  

Section 15.5 Measuring Memory Latency outlines the steps to measure memory latency 
under concurrent loads. 

8 PCIe	Performance	Analysis	

NF workloads often involve significant amount of network traffic and hence consume 
high I/O bandwidth. Understanding interactions between Cores and Network Interface 
Cards (NICs) can help identify and resolve performance bottlenecks of these applications. 
This section first looks at how PCIe devices interact with Intel® Xeon® E5 v4 Family 
processor architecture using Direct Data IO Technology. It then moves to a deep dive 
into pcm-pcie.x, the tool for PCIe performance analysis.  

8.1 Understanding	PCIe	Bandwidth	Consumed	by	NIC	

A packet processing application involves a series of transactions between NIC, memory 
or LLC and Core. Figure 22 later in this paper shows sequence of operations involved in 
typical “bump in wire” use cases. Two main variants of these transactions are described 
in the following sections. 

8.1.1 Transactions	Originated	by	NIC	

Network Interface Cards (NICs), such as Intel 82599, Intel XL710, generate two types of 
PCIe Read and Write transactions to memory: 

• Ethernet packets: The PCIe transaction size depends on Ethernet packet size. 

• Transmit (Tx) and Receive (Rx) descriptors: CPU cores and NICs communicate 
information through descriptors. The Tx descriptors contain packet physical address, 
number of bytes in the packets, and other control information. The Rx descriptors 
contain information on receive packet buffer addresses, number of bytes received, 
control and status of the received packets etc. These descriptors are stored in 
contiguous memory space. In many cases, NICs coalesce multiple descriptors while 
writing/reading to system memory so as to optimize PCIe efficiency. In the least 
favorable case, one descriptor is read/written at a time, which results into partial or 
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sub cache-line read/write PCIe transactions to LLC/memory and also lowers PCIe 
efficiency.  

8.1.2 Transactions	Initiated	by	CPU		

CPU cores regularly write to NIC Receive and Transmit tail pointers to notify NICs that 
new descriptors are available to fetch and process. Core to PCIe device write transactions 
are in Memory Mapped I/O (MMIO) address space and they are mapped in Uncacheable 
region. MMIO writes are expensive operations - they can consume up to a few tens of 
core cycles. Besides, such operations can end up consuming portion of PCIe bandwidth, 
if they are used too often. Due to these two reasons, software should minimize Rx and Tx 
tail pointer update operations whenever possible. VPP and DPDK software try to limit 
tail pointer updates by issuing one update at every 16th or 32nd packet.  

CPU to PCIe device Read transactions are even more costly, as they are dependent on 
core to PCIe device round trip latency. Such transactions can consume several hundred 
core cycles and hence should be avoided.  

8.2 Calculating	PCIe	Bandwidth	from	Ethernet	Packet	Rate	

Applying the explanations and understanding of PCIe bandwidth consumed by CPU and 
NIC interactions, we arrive to the two formulas for NIC network packet write and read to 
memory. 

𝑃𝐶𝐼𝑒_𝑡𝑜_𝑀𝑒𝑚𝑜𝑟𝑦_𝑊𝑟𝑖𝑡𝑒_𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛		𝑖𝑛	𝑀𝐵𝑦𝑡𝑒𝑠/𝑠	
= 	𝐴 + 𝐵 + 𝐶 ∗ 𝐸𝑡ℎ𝑒𝑟𝑛𝑒𝑡_𝑃𝑎𝑐𝑘𝑒𝑡_𝑅𝑎𝑡𝑒	(𝑖𝑛	𝑀𝑃𝑘𝑡𝑠/𝑠)		 

Equation 23. PCIe to memory write bandwidth consumption. 

With NIC performing following PCIe to Memory/LLC write transactions for each packet: 

• A – Number of Bytes in a received Packets 

• B – Number of Bytes in Rx Descriptor write back per packet. 

• C – Amortized Number of Bytes Tx Descriptor write back per packet  
 

𝑃𝐶𝐼𝑒_𝑡𝑜_𝑀𝑒𝑚𝑜𝑟𝑦_𝑅𝑒𝑎𝑑_𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ_𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑖𝑛	𝑀𝐵𝑦𝑡𝑒𝑠/𝑠
= 𝐷 + 𝐸 + 𝐹 ∗ 𝐸𝑡ℎ𝑒𝑟𝑛𝑒𝑡_𝑃𝑎𝑐𝑘𝑒𝑡_𝑅𝑎𝑡𝑒 

Equation 24. PCIe to memory read bandwidth consumption. 

With NIC performing following PCIe to Memory/LLC write transactions for each packet: 

• D – Number of Bytes in Packet to be transmitted – 4 (Ethernet Checksum is 
normally calculated and added to a packet by the NIC, hence the last 4 Bytes of 
packets are not read from memory). 

• E – Number of Bytes in Rx Descriptor per packet. 

• F – Number of Bytes in Tx Descriptor per packet. 
Assuming legacy descriptors of 16B for Network Interface Cards (NICs), such as Intel 
82599, Intel XL710, the values of B, C, E, F would 16 Bytes each. 
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In many cases, software may want to save PCIe bandwidth and can program NIC to write 
back only one Tx descriptor at every Nth packet confirming the successful transmission 
of all previous packets.  In such cases value of C is amortized over N packet.  
Taking one Tx descriptor write back at every 16th packet, the value of C becomes 
16B/(amortized over 16 packets), i.e. 1 Byte per packet. 
Table 16 uses above formula to calculate the raw PCIe data bandwidth consumption for 
various packets sizes while forwarding packets at 10 Gbits/s line rate.   
 

Ethernet Packet 
Size (in Bytes) 

Calculated Packet 
Rate at 10 GE line 

rate (Million 
Packets/s) 

Calculated PCIe 
Read Bandwidth 

Consumption 

(MBytes/s) 

Calculated PCIe 
Write Bandwidth 

Consumption 

(MBytes/s) 

64	 14.88	 1429	 1205	

128	 8.45	 1351	 1225	

200	 5.68	 1318	 1233	

256	 4.53	 1304	 1236	

384	 3.09	 1287	 1241	

512	 2.35	 1278	 1243	

768	 1.59	 1269	 1245	

1024	 1.20	 1264	 1246	

1280	 0.96	 1262	 1247	

1518	 0.81	 1260	 1248	

Table 16. Raw PCIe data bandwidth for 10GE line rate per Ethernet frame size. 

The relationships between packet sizes, packet rates and theoretical PCIe bandwidth 
consumption, often help debug performance issues in the architecture. 

8.3 Intel®	Direct	Data	IO	Technology	(DDIO)	

Intel® DDIO23 technology in Intel® Xeon® E5 v4 Family processor family essentially 
enables PCIe devices to write data directly to the Last Level Cache (LLC) rather than 
system memory. In order to understand interactions between a PCIe device and LLC, the 
discussion is divided into following two scenarios: 
1) A PCIe device (e.g. NIC) writes a cache-line to the system memory, the following 

DDIO rules apply: 

                                                
23 Intel® Direct Data I/O technology – http://www.intel.com/content/www/us/en/io/data-
direct-i-o-technology.html?wapkw=ddio; 
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html.   
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• If the same cache-line is already present in any of the cache ways of Last Level 
Cache (LLC), the cache-line is over-written by the new data.  

• If the cache-line is not present in any of the cache ways of LLC, the cache-line is 
allocated in the LLC then the new data is written to LLC. At a later time, this 
cache-line is written back to the memory following the LRU policy. Note that 
only a subset of LLC ways are used for allocating cache-lines needed for PCIe 
write transactions.  

2) A PCIe device is reading a cache-line from the system memory, the following DDIO 
rules apply: 

• If the cache-line is already present in any of the cache ways of Last Level Cache 
(LLC), the cache line is sent to the device without causing system memory read 
transactions. A cache-line can be present in the LLC because of two reasons - a 
core might have accessed it, or PCIe device might have written it previously.  

• If the cache-line is not present in any of the cache ways of Last Level Cache 
(LLC), it is read from system memory and sent to PCIe device. 

DDIO technology brings two main advantages:  

• Saving in Memory Bandwidth: Per explanation in the previous section, High packet 
rate network traffic could consume inordinate amount of memory bandwidth. A 
DDIO optimized network application can substantially reduce system memory 
consumption and help mitigate performance saturation arising from memory 
bottlenecks. This technology has been effectively leveraged in high packet rate data 
plane processing solutions like FD.io VPP and many other based on the Data Plane 
Development Kit (DPDK). 

• Low latency accesses to incoming data from NICs: As DDIO allows PCIe device 
to write directly to LLC rather than system memory, there is a substantial saving in 
latency when a core wants to read the data written by a NIC. For example, a core can 
access header of a newly written packet with a latency equal or less than LLC latency. 
In absence of DDIO, a core has to access system memory for performing the same 
operation and could incur 3x or more latency.  

DDIO is one the key features which enables high-speed network data plane performance. 
Figure 22 depicts the life of packet for a DDIO optimized DPDK and VPP applications. 
Such applications use aggressive memory buffer recycling i.e. once packet buffers are 
processed and released, they are reallocated immediately. In this way, the Network card 
can rewrite these buffers with new packets while the buffers are still present in LLC.  By 
keeping the application’s active memory span to minimum, network packets essentially 
traverse between cores and NICs through LLC without incurring significant memory 
traffic.  
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Figure 22. VPP and DPDK packet processing using Direct Data I/O. 

 

8.4 PCIe	Performance	Monitoring	

The PCM-PCIe.x utility of PCM toolchain offers a convenient way for measuring PCIe 
bandwidth in real time. By default, the statistics are shown in with ~1 sec display update 
rate.  The command line for the tool is as follows:  

# ./pcm-pcie.x –e 1 

Figure 23 shows the sample output of pcm-pcie.x for the DPDK l3fwd example 
application forwarding 64B packets at 29.76 Mpps rate. Note that all numbers are in 
cacheline units. Actual bandwidth can be calculated by multiplying the numbers by 64. 
The detailed analysis of the performance numbers is discussed at the end of this section. 
Skt | PCIeRdCur |  RFO  |  CRd  |  DRd  |  ItoM  |  PRd  |  WiL 

 0      45 M      8587 K   449 K   102 M     33 M     0    1891 K       (Total) 

 0       0           0      24    3276        0       0    1892 K       (Miss) 

 0      45 M      8587 K   449 K   102 M     33 M     0       0         (Hit) 

 1       0           0      79 K    66 K      0       0       0         (Total) 

 1       0           0       0    5532        0       0       0         (Miss) 

 1       0           0      79 K    61 K      0       0       0         (Hit) 

----------------------------------------------------------------------- 

 *      45 M      8587 K   528 K   102 M     33 M     0    1891 K       (Aggregate) 

  Figure 23. pcm-pcie.x output. 

Table 17 below describes the interpretation of individual events.  

Events Description Notes: 

PCIe/Core Read events (PCIe devices/Cores reading from memory)   

(1) Core	writes	Rx	descriptor	in	preparation	for	receiving	a	packet.
(2) NIC	reads	Rx		descriptor	to	get	ctrl	flags	and	buffer	address.
(3) NIC	writes	the	packet.
(4) NIC	writes	Rx	descriptor.
(5) Core	reads	Rx	descriptor	(polling	or	irq	or	coalesced	irq).
(6) Core	reads	packet	header	to	determine	action.
(7) Core	performs	action	on	packet	header.
(8) Core	writes	packet	header	(MAC	swap,	TTL,	tunnel,	 foobar..)
(9) Core	reads	Tx	descriptor.
(10) Core	writes	Tx	descriptor	and	writes	Tx	tail	pointer.
(11) NIC	reads	Tx	descriptor.
(12) NIC	reads	the	packet.
(13) NIC	writes	Tx	descriptor.

Minimal	memory	traffic	per	packet.

Most	of	software	thread	work	in	CPU	core	and	local	cache	with	
smart	algos	and	predictive	prefetching	(shifted	 forward	in	time)
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PCIeRdCur PCIe read from system 
memory (not allocated line in 
LLC) 

 

Hit: Counts the number of cachelines 
which were served from LLC to fulfill 
PCIe to Memory read requests. Such 
LLC hits occur when the requested data 
is already deposited in LLC due 
previous CPU read/write or writes from 
PCIe device to the same cache lines. 

Miss: Counts the number of cachelines 
which were read from system memory 
to fulfill PCIe to Memory read requests.  
The software optimization effort should 
aim for much larger PCIeRdCur Hit 
counts than Miss counts. 

DRd PCIe or Cores read  from 
system memory (cache lines 
are allocated line in LLC)  

This counter also includes CPU reading 
data in LLC  

 

CRd PCIe or read from system 
memory (allocate line in 
LLC) 

This counter includes CPU reading 
instruction Code in LLC 
 

PCIe write events (PCIe devices writing to memory)   

ItoM PCIe write (full cache line 
size and cacheline aligned) to 
system memory. ItoM stands 
for Invalid state to Modified. 

Hit:  ItoM Hit counts the number of full 
cachelines PCIe device is trying to write 
to memory but they are already present 
in LLC (in Modified state).  
Miss: Miss represents the new cache 
lines being allocated while a PCIe 
device is writing to memory since they 
were not present (in Invalid state). In 
this case lines are allocated in the LLC. 

As DDIO enabled by default, the 
aggregate count would be high for many 
I/O centric workloads.  
The software optimization effort should 
aim for high ItoM Hit count. This can 
be done by reusing (recycling) the 
buffers quickly so that when a NIC 
writes new packets to memory, the old 
content of the buffer is still present in 
the LLC resulting in LLC hits. 

RFO PCIe write to System memory 
which is sub-cacheline (less 

Hit: When PCIe devices is writing less 
than a cache line and cacheline is 
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than 64Byte). The partial 
Write results in Read For 
Ownership (RFO) event 

already present into LLC, this count 
would increment.  
Miss: When PCIe device is writing less 
than a cache line and cacheline is 
already present into LLC, this count 
would increment. In this case, whole 
cacheline is read from memory, and 
merge with new PCIe data and 
deposited in the LLC. 

Software optimization effort should 
minimize partial cache lines writes 
when possible by aligning buffers at 
cacheline boundaries. Besides, it should 
aim for high RFO Hit count compared 
to Miss rate. This can be done by 
reusing (recycling) the buffers quickly.  

CPU to Memory Mapped IO events (CPU reading/writing to PCIe devices) 

PRd Aggregated MMIO 
Read/CPU read transactions 
to memory mapped device 
memory on all PCIe devices  

This counter counts number of Cpu to 
Memory Read operations in PCIe 
memory mapped I/O space. Such 
operations in the Uncacheable regions 
are very time consuming.  
An I/O optimized software should 
minimize this operation. This count 
should be very low (a few hundreds) 

WiL        Aggregate MMIO Write/CPU 
write operations to memory 
mapped device memory on 
PCIe device 

This counter counts number of CPU to 
Memory write in PCIe memory mapped 
I/O space. The most common operations 
are updates to the NIC’s Tx and Rx Tail 
pointers.  
A well optimized software would 
minimize such operations. Keeping it 
below 1M/s per core is a good target to 
hit.  

Table 17. PCM-PCIe.x events description. 

8.5 Network	Traffic	Analysis	with	PCM-PCIe.x	

This section illustrates the use of pcm-pcie.x for PCIe analysis using DPDK l3fwd 
application as an example application. Figure 24 below shows the PCIe characteristics 
for this application forwarding 64B packets at rate of 29.8M Packets/s. Note that the ItoM 
and PCIedRDcur counts are in cache line (64B) granularity. 
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Skt | PCIeRdCur |  RFO  |  CRd  |  DRd  |  ItoM  |  PRd  |  WiL 

 0      45 M      8587 K   449 K   102 M     33 M     0    1891 K       (Total) 

 0       0           0      24    3276        0       0    1892 K       (Miss) 

 0      45 M      8587 K   449 K   102 M     33 M     0       0         (Hit) 

 1       0           0      79 K    66 K      0       0       0         (Total) 

 1       0           0       0    5532        0       0       0         (Miss) 

 1       0           0      79 K    61 K      0       0       0         (Hit) 

----------------------------------------------------------------------- 

 *      45 M      8587 K   528 K   102 M     33 M     0    1891 K       (Aggregate) 

Figure 24. PCM-PCIe.x output for DPDK-L3Fwd application. 

The following observations can be made from this measurement: 

• All transactions are on Socket 0. 

• ItoM (full cachleline writes): Looking at the above figure, 33M transactions/second 
show 100% LLC hit, 0 on Miss. These means that all full cacheline PCIe writes are 
hitting the LLC. This tells that the software recycles packet buffers very effectively. 
Out 33 MT/s cacheline transactions, 29.8 MT/s are from 64 B Ethernet packet writes. 
The rest (33-29.8 = 3.2 MT/s) are for Rx descriptor write backs. Since each Rx 
descriptors are 16B in size, 3.2 MT/s full cacheline Rx descriptor write back 
transactions equate to 3.2 x (64/16) = 12.8 MT/d Rx descriptors. So, out of 29.8 M 
packets/s, less than half of the Rx descriptor writebacks seem to coalesce to create 
full cachelines. The rest of the Rx descriptors generate sub-cacheline writes. Note that 
for this application, Tx descriptors are written at every 16th packet. Hence, they do 
not generate full cache line transactions, and thus do not generate IoM event. 

• RFO (Partial cacheline writes): Looking at the above figure, 8.58 M/s transactions 
show 100% LLC hit, 0 on Miss. For the give test, these counts are solely from Rx and 
Tx descriptor write backs. Considering 1 descriptor write at every 16th packet, 29.8/16 
= 1.87M T/s are generated from Tx writeback transactions. Rest 6.7 MT/s 
transactions are generated from Rx descriptor write backs. Note that Rx descriptors 
can still be coalescing to 32, or 48, and that would generate 1 RFO event.   

• PCIeRdCur: This event also shows 100% hit rate. This tells that all PCIe to memory 
read requests are fulfilled from LLC. In this case, 64B ethernet packets would 
generate 29.8 MT/s transactions. Assuming that the Rx and TX descriptor reads are 
coalesced to full 64B cacheline sizes, they would generate 29.8M/4 and 29.8M/4  
cachelines/s respectively. Sum of ethernet packets and Rx and Tx descriptor adds to 
45 MT/s, which is the same as measured by the PCM-PCIe output.  

• WiL:  Tx and Rx tail pointer are updated at every 32nd packet. So number of CPU to 
PCIe MMIO writes are 29.8Mpps/32+ 29.8 Mpps/32 = 1.8 M/s which matches the 
pcm-pcie.x output. 
In summary, PCM-PCIe.x offers great insight into processor’s PCIe complex 
behavior and it could help debug and tune the system level performance. 
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9 Inter-Core	and	Inter-Socket	Communication	

Similar to numerous data center and cloud applications, many packet networking 
processing applications make best use of multicore architecture for scaling the 
performance. The cores running such applications often share code and data with other 
cores in the same CPU socket. In some cases cores may access caches and system 
memory from the remote sockets in a multi-socket platform. Frequent sharing of data 
between cores and accessing remote socket resources often lead to less than optimal 
performance. Understanding core to core and core to remote socket interactions is thus 
important for optimizing performance of a multi-socket system.  

9.1 Inter-Core	Interactions	within	the	Socket	

In many network applications, cores share the same set of data. Applicable cases include: 

• Application runs in multi-threaded setup using multiple cores, with each thread 
running the same code and executing all stages of packet processing functions. 
However, the threads and associated cores share common memory locations for 
storing forwarding table, global counters, etc. FD.io VPP is an example of such 
implementation. 

• Application divides packet processing work across multiple threads with processing 
done in the pipeline fashion. Threads with associated different cores execute certain 
network function. Here cores need to exchange metadata, parts of the packet buffers, 
and other info. DPDK ip_pipeline example code demonstrates the concept where a 
handful of cores handle network interfaces while rest of the cores do packet 
processing like Flow classification, ACL, metering, routing, and QoS commonly 
found in applications such as Provider Edge Router.  

• In a virtualized setup, a core running qemu vhost-user task handles virtual Ethernet 
ports, packets, and copying of packets between host space (kernel-mode) and virtio 
space (user-mode). The core running qemu VM task reads the copied data. The 
opposite action happens when a core running VM copies the data to virtio and a core 
running vhost-user reads and eventually transmit the data.  

In addtion, the operations like i) resource synchronization using spinlocks, ii) updates of 
global statistics counters and iii) software based queuing, also involve core to core 
interactions. Such operations result in migration of cacheline(s) between the L1/L2 
caches across the cores. In general, core to core data transfers are expensive as they can 
consume several tens of cycles and hence should be avoided whenever possible.  
Section 15.6 Inter-Processor Communications within the same socket describes the 
performance events for detecting core to core transfers.  

9.2 Inter-Socket	Interactions	

Most current Operating systems support NUMA. They do a very good job of allocating 
the buffers on the memory controllers closer to the cores. Such NUMA optimization 
helps minimize core to system memory latency and hence the IPC.   



                                                                                                                          

 
68 

However, sometimes there are occasions where a core ends up accessing locations that 
are mapped to the remote system memory. Following are few examples, where a core is 
subjected to access memory on the other socket:  

• A master core allocates packet statistic counters in a buffer which is accessed by 
all the cores, including the ones in the remote socket.  

• Network cards are on one socket and part of the application runs on both sockets. 

• An application pre-allocates a packet buffer pool and the OS migrates an 
application to the cores on the other socket.  

• In virtualized environment, openvswitch or vhost-user runs on cores on one 
socket, and VM runs on cores on the other socket, receiving packets through 
virtio interface.  

In many cases, such cross-socket transfers could be reduced or eliminated through 
software tuning. However, the most important thing is to detect the occurrences of such 
transactions.  
PCM.x tool offers an easy way to detect such cross-socket transfers over QPI (Quick Path 
Interconnect). Figure 25 shows a sample output of PCM.x for a synthetic workload to 
illustrate inter-socket communication. Benchmark test setup described in this paper 
focused on single NUMA tests, hence there was no inter-socket communication. 
Intel(r) QPI traffic estimation in bytes (data and non-data traffic outgoing from 
CPU/socket through QPI links): 

 

               QPI0     QPI1    |  QPI0   QPI1 

----------------------------------------------------------------------------------------- 

 SKT    0     2049 M   1959 M   |   10%    10% 

 SKT    1     1531 M   1583 M   |    7%     8% 

----------------------------------------------------------------------------------------- 

Total QPI outgoing data and non-data traffic: 7123 M 

Figure 25. PCM.x sample output for QPI transfers. 

Note that the QPI counters count both Data cache lines, as well other non-data one (such 
as QPI control and snoop packets). It is therefore not easy to judge the exact impact of 
these counts on the performance of an applications. In general though, the above counts 
should be close to zero for NUMA optimized applications. 
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10 Performance	Tuning	Tips	
This section describes some basic tuning techniques which could be handy while tuning a 
workload for high network performance.  
 

10.1 Basic	Tuning	of	the	test	infrastructure	
 

 Recommendations Notes 

1.1 Tune the bios for performance. Avoid 
Speed-State, Turbo, Deep C-state for 
consistency in performance and better 
No packet Drop rate. 

Refer to example BIOS setting on 
E5-2699v4 given in Section 13.3 
Server BIOS Settings. 

1.2 Tune PCIe network cards, other PCIe 
device for optimum performance. 
Turn off ASPM in BIOS, ensure 
PCIe devices use Max Payload size 
of 256B or more, Max Read request 
Size of 512 or more. 

Use linux lspci –vvv command to 
check. Check BIOS, driver to debug 
possible issue. 

1.3 Tune OS for low jitter. Compile kernel with options which 
produce low jitter, avoid unnecessary 
services, use isolcpus when possible. 

1.4 Ensure that Memory latency is as 
expected. 

Run “mlc” to check idle latency. 

1.5 Ensure that Memory bandwidth is as 
expected (general conservative 
formula on Xeon E5 – Expected b/w 
per socket is : 8 * DDR * DDR4 
speed (e.g2400 for DDR2400) * 
number of channels. 

Run “mlc” to check the speed. 

1.6 Ensure that Memory utilization is 
balanced. 

Run mlc, run pcm-memory.x and 
observer that utilization is equal on 
all sockets. If not, check BIOS setting 
to ensure that Cluster-on-die is off. 

 

10.2 Simple	performance	debugging	guidelines	while	running	NF	app	

 

2.1 Ensure that IPC is 1.75 or more. If not, compute is constrained by 
Cache, LLC or memory latency. 
Debug the code. 
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2.2 Check cycles per packets are within 
you expectation. CPP can be 
calculated using the formula 
explained in Section 3.3 
Benchmarking NF Applications. 

If CPP is substantially high, compile 
the code with aggressive optimization 
for the architecture, check code flow. 

2.3 Check for memory bandwidth 
consumption. Check if Memory b/w 
packet is within the expected range. 

Use PCM-Memory.x to measure 
memory bandwidth. Also ensure that 
all channels are uniformly used for 
the workloads. 

2.4 If performance is below expectation, 
check for cross socket interactions. 

Use command lines explained in 
Appendix C. Find the source of cross 
socket interactions. 

2.5 If performance is below expectation, 
or want to boost performance conduct 
TMAM analysis. 

Use pmu-tools. 
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11 Conclusions	
Analyzing and optimizing performance of software applications continues to be an area 
of ongoing research and development, especially for NF applications. This paper 
described a proposed simple methodology of benchmarking and analyzing the most 
performance sensitive functional area of NF applications, their data plane. 
Following specified benchmarking and analysis methodology and leveraging generally 
available test and measurement tools described in this paper, it is quite straightforward to 
evaluate NF applications. Using identified baseline NF data plane performance metrics 
one can benchmark those applications and compare them in terms of efficiency of using 
compute resources and their performance on modern COTS servers. Moreover, provided 
analysis of the baseline factors that drive NF data plane performance scalability (core 
frequency, simultaneous multi-threading, multi-core), underpinned by measurement data, 
should aid users in NF capacity planning and their production deployments. Equally, 
described benchmarking metrics, their meaning and optimal value guidelines should help 
program developers to identify coding patterns for efficient and performant NF data 
planes, and hopefully popularize benchmarking driven NF data plane development. 

Applicability of described benchmarking and analysis methodology has been illustrated 
by benchmarking actual NF applications, including feature-rich and deployable NF 
applications, namely OVS-DPDK and FD.io VPP. 
Authors believe that this paper can be used as a stepping stone to establish a reference 
standard best practice benchmarking methodology and analysis for NF applications’ data 
planes. 

Future work needs to focus on further development and tuning the benchmarking 
methodology to address variety of NF applications, improving automated testing tools 
and their availability, as well as continuous development of measurement and analysis 
tools that take advantage of ongoing processor telemetry advancements including the 
latest generation of Intel® Xeon® scalable processors. 
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13 Appendix:	Test	Environment	Specification	
13.1 System	Under	Test	–	HW	Platform	Configuration	

 
Mother Board Super Micro* X10DRX  

Processor Intel Xeon E5-2699 v4/E5-2667v4, Dual Socket configuration 

Memory DDR4-2400, 1 DIMM per channel, 4 Channels for each socket 

BIOS Version Version 2, 12/17/2015 

Network Cards X710-DA4 quad 10 Gbe Port cards, 5 cards total 

 

13.2 System	Under	Test	and	Tested	Applications	–	Software	Versions	

 
Linux OS Distribution Ubuntu 16.04.1 LTS x86_64 

Kernel Version 4.4.0-21-generic 

Fortville firmware version FW 5.0 API 1.5 NVM 05.00.04 eetrack 800024ca 

DPDK Version DPDK 16.11 

VPP Version v17.04-rc0~143-gf69ecfe 

QEMU version 2.6.2 

OVS version 2.6.90 

Guest OS and kernel  Ubuntu 16.04.1 LTS x86_64 

VPP vnet version v17.04-rc0~143-gf69ecfe 
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13.3 Server	BIOS	Settings	
 

Menu (Advanced) BIOS Submenu Items BIOS 
Settings 

Used for the 
tests 

BIOS 
Defaul
t 

CPU Configuration:   
Advanced Power 
Management 
Configuration 

  

  

  

  

Hyper-Threading  (ALL) Disable Enable 

Power Technology Disable Custom 

Energy Performance Tuning  Disable Enable 

Energy Performance BIAS Setting Performance Enable 

Energy Efficient Turbo Disable Enable 

-> CPU P State Control 

 

EIST (P-States) Disable Enable 

Turbo Mode Disable Enable 

P-State Coordination HW_ALL HW_A
LL 

-> CPU C State Control 

 

Package C State Limit [C0/C1 State] [C6 
(Retenti
on)] 

CPU C3 Report Disable Enable 

CPU C6 Report Disable Enable 

Enhanced Halt State (C1E) Disable Enable 

Chipset Configuration:  
North Bridge -> IIO 
Configuration 

  

EV DFX Features Enable Disable 

Intel VT for Directed I/O (VT-d) Disable Enable 

Chipset -> North 
Bridge -> QPI 
Configuration 

  

  

Link L0 P Disable Enable 

Link L1 Disable Enable 

COD Enable Disable Auto 
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Early Snoop Disable Auto 

Isoc Mode Disable Disable 

-> North Bridge -
>Memory 
Configuration 

  

  

  

Enforce POR Disable Auto 

Memory Frequency 2400 Auto 

DRAM RAPL Baseline Disable Auto 

A7 Mode Enable Enable 

-> South Bridge 

  

EHCI Hand-off Disable Auto 

USB3.0 Support Disable Enable 

PCIe/PCI/PnP 
Configuration 

  

ASPM Disable Enable 

Onboard LAN 1 OPROM Disable PXE 

 

13.4 Packet	Traffic	Generator	–	Configuration		
 

Traffic Generator Ixia® Traffic Generator 

 
Throughput Test Ixia® Quick Test: throughput rate search for finding zero-frame loss 

packet throughput in compliance with RFC 2544 
Search algorithm Binary search. 
Starting condition 10% of link rate. 
Stopping condition Search finds the <0.01% loss rate packet throughput and exceeds 

minimum rate change value. 
Number of test trials per 
each search step 

8. 

Test trial duration 20 seconds. 
Allowed packet loss  <0.01%. 
Minimum rate change 
value 

0.1 Mpps. 

 
Test Ixia packet flow definitions 

All L2 Ethernet tests 3,125 distinct flows transmitted per interface. 
 Each distinct flow with unique tuple of (Source_MAC_Address, 

Destination_MAC_Address). 

All L3 IPv4 tests 62,500 distinct flows transmitted per interface. 
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 Each distinct flow with unique tuple of (Source_IPv4_Address, 
Destination_ IPv4_Address). 

Common to all tests Both packet header source and destination address fields incremented 
pairwise by 1 in a packet-by-packet sequence. 

 Continuous packet flows at fixed rate, with packets equally spaced in 
time, no bursts. 

 Single Ethernet frame size of 64B including Ethernet FCS, smallest 
standard Ethernet frame possible with IPv4 payload. 
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14 Appendix:	Benchmarking	Tools	Use	Guidelines	
14.1 Linux	‘perf’	
How to install Linux ‘perf’ on Ubuntu 16.04: 
apt-get install linux-perf 

 

The following conventions are used within this and the following sections: 
Set environmental variable $CORENO to the core(s) of interest.  

e.g. for monitoring events on core 2, use 
# export CORENO=2 

Or, for monitoring events on core 2,3,4 use 
# export CORENO=2-4 

 

Monitoring any discrete event using linux ‘perf’: 
# perf stat -e eventname -C$CORENO -I1000 

For example, 

perf stat -e cpu/event=0x79,umask=0x30,name=idq_ms_uops/ -C1 –I1000 

 

Locating the hotspot for an event at source code level: 
# perf top -e eventname -C$CORENO -I1000 

For example, 

perf top -e cpu/event=0x79,umask=0x30,name=idq_ms_uops/ -C1 

 

Measuring #instructions/cycle (IPC): 
# perf stat -e instructions,cpu-cycles -C$CORENO sleep 1 

 
Capturing Intel Processor Trace (PT): 
### Trace data will be in gigabytes if captures continuously.  

### Thus we will use –S to enable snapshot mode. 

### In snapshot mode, PT data is only store when perf instance received –USR2 signal 

# perf record –S -e intel_pt// -C$CORENO 

# sleep 1 

# pkill perf –USR2 

# sleep 1 

# pkill perf -SIGINT 
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Decoding Intel Processor Trace (PT) data: 
# perf script --itrace=i1i #i1i: instruction decode, granularity = single instruction 

### i1i is the lowest level of information we can obtain from PT. 

 

14.2 Performance	Analysis	using	PMU-tools	

How to install PMU-Tools 

Pre-requisites: PMU-tools is based on Linux Perf utilities.  
Download the tools from https://github.com/andikleen/pmu-tools and compile it. 

Update the event list for your processor using the script “event_download.py “ 
Add the pmu-tools folder to the default path. This would allow ocperf.py and other 
utilities to run from any folder.  
 

Monitoring a discrete event using pmu-tools: 
# ocperf.py stat -e eventname -C$CORENO -I1000 

For example, 

# ocperf.py stat -e idq_ms_uops -C1 -I1000 

Locating the hotspot for an event at source code level: 
# ocperf.py top -e eventname -C$CORENO -I1000 

For example, 

# ocperf.py top -e idq_ms_uops -C1 

 

Getting instructions per cycle (IPC):  
# ocperf.py stat -e instructions,cpu-cycles  -C$CORENO  sleep 1 

 

14.3 TMAM	Analysis	using	PMU-tools	
TMAM statistics can be easily gathered with a simple command line. 

 

TMAM Level 1 events: 
# toplev.py --core C$CORENO -l1 --no-desc -v --ignore-errata sleep 300 

 

TMAM Level 2 events: 
# toplev.py --core C$CORENO –l2 --no-desc -v --ignore-errata sleep 300 

 

TMAM Level 3 events: 
# toplev.py --core C$CORENO –l3 --no-desc -v --ignore-errata sleep 300 
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TMAM Level 4 events: 
# toplev.py --core C$CORENO –l4 --no-desc -v --ignore-errata sleep 300 

 

14.4 Installing	and	using	PCM	tools	

Download the source code from https://github.com/opcm/pcm 

Follow the installation steps. 
As per the information on the above web site, PCM incorporate provides a number of 
command-line utilities for real-time monitoring: 

• pcm: basic processor monitoring utility (instructions per cycle, core frequency 
(including Intel(r) Turbo Boost Technology), memory and Intel(r) Quick Path 
Interconnect bandwidth, local and remote memory bandwidth, cache misses, core and 
CPU package sleep C-state residency, core and CPU package thermal headroom, 
cache utilization, CPU and memory energy consumption) 

• pcm-memory: monitor memory bandwidth (per-channel and per-DRAM DIMM 
rank) 

• pcm-pcie: monitors PCIe bandwidth and other related statistics 
• pcm-numa: monitors local and remote memory accesses 
• pcm-power: monitors sleep and energy states of processor, Intel(r) Quick Path 

Interconnect, DRAM memory, reasons of CPU frequency throttling and other energy-
related metrics 

• pcm-tsx: monitors performance metrics for Intel(r) Transactional Synchronization 
Extensions 

• pcm-core and pmu-query: query and monitor arbitrary processor core events 
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15 Appendix:	Deep-dive	TMAM	Analysis	using	Linux	perf	and	PMU-
Tools	

This section describes the commands for counting individual events in the TMAM 
hierarchy. Once performance bottleneck hotspots are found from the top level TMAM 
analysis as described in the Section 6 , these commands could be used for monitoring the 
specific events of interest while optimizing the code. For example, if TMAM finds high 
counts on the Bad_Speculation.Branch_Mispredicts, the event 
“br_misp_retired_all_branches” could be monitored during the code optimization and 
benchmarking cycles. These commands would also help locate hotspots in the code by 
running “perf top” or “ocperf.py top” on the selected processor core events. 

For the sake of completeness, the commands are given for both Linux “perf” utility and 
PMU-tools. 

15.1 Events	related	to	TMAM	%Retiring	
%Retiring 
# perf stat -e \ 
cpu/event=0x3c,umask=0x0,any=1,name=cpu_clk_unhalted_thread_any/,cpu/event=0xc2,umask=0x2
,name=uops_retired_retire_slots/,cpu/event=0xe,umask=0x1,name=uops_issued_any/,cpu/event=
0x79,umask=0x30,name=idq_ms_uops/ -C$CORENO  -I1000 

or 

# ocperf.py stat -e CPU_CLK_UNHALTED_THREAD_ANY,\ 
UOPS_RETIRED.RETIRE_SLOTS,UOPS_ISSUED.ANY,IDQ.MS_UOPS  -C$CORENO -I1000 

 

15.2 Events	related	to	TMAM	%Bad_Speculation	
%Bad_Speculation 
# perf stat -e 
cpu/event=0xe,umask=0x1,name=uops_issued_any/,cpu/event=0xc2,umask=0x2,name=uops_retired_
retire_slots/,cpu/event=0xd,umask=0x3,any=1,cmask=1,name=int_misc_recovery_cycles_any/ -
C$CORENO -I1000 

or 

# ocperf.py stat -e 
UOPS_ISSUED.ANY,UOPS_RETIRED.RETIRE_SLOTS,INT_MISC.RECOVERY_CYCLES_ANY  -C$CORENO -I1000 

 

%Bad_Speculation.Branch_Mispredicts 
# perf stat -e cpu/event=0xc5,umask=0x0,name=br_misp_retired_all_branches/ -C$CORENO -
I1000 

or 

# ocperf.py stat -e BR_MISP_RETIRED.ALL_BRANCHES -C$CORENO -I1000 

 

%Bad_Speculation.Machine_Clears 
# perf stat -e cpu/event=0xc3,umask=0x1,name=machine_clears_cycles/ -C$CORENO -I1000 
or 
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# ocperf.py stat -e machine_clears.cycles -C$CORENO -I1000 

 

15.3 Events	related	to	TMAM	%Frontend_Bound	
%Frontend_Bound 
# perf stat -e \ 
cpu/event=0x9c,umask=0x1,name=idq_uops_not_delivered_core/,cpu/event=0x3c,umask=0x0,any=1
,name=cpu_clk_unhalted_thread_any/ -C$CORENO -I1000 

or 

# ocperf.py stat -e IDQ_UOPS_NOT_DELIVERED.CORE,CPU_CLK_UNHALTED.THREAD_ANY -C$CORENO -
I1000 

 

%Frontend_Bound.Frontend_Latency 
# perf stat -e\ 
cpu/event=0x9c,umask=0x1,cmask=4,name=idq_uops_not_delivered_cycles_0_uops_deliv_core/ -
C$CORENO -I1000 

or 

# ocperf.py stat -e IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE -C$CORENO -I1000 

 

%Frontend_Bound.Frontend_Bandwidth 
# perf stat -e 
cpu/event=0x9c,umask=0x1,name=idq_uops_not_delivered_core/,cpu/event=0x9c,umask=0x1,cmask
=4,name=idq_uops_not_delivered_cycles_0_uops_deliv_core/,cpu/event=0x3c,umask=0x0,any=1,n
ame=cpu_clk_unhalted_thread_any/ -C$CORENO -I1000 

or 

# ocperf.py stat -e \ 
IDQ_UOPS_NOT_DELIVERED.CORE,IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE,CPU_CLK_UNHAL
TED.THREAD_ANY -C$CORENO –I1000 

 

%Frontend_Bound.Frontend_Latency.ICache_Misses 

Intel® Xeon® E5 v4 Family processors have L1 instruction cache of 32K bytes. If 
execution path for an application spans beyond this range, instruction cache miss event is 
incremented. The penalty due to instruction cache is calculated using the following 
equation. 

%	𝐼𝐶𝑎𝑐ℎ𝑒	𝑀𝑖𝑠𝑠𝑒𝑠	 = 	
	𝐼𝐶𝐴𝐶𝐻𝐸. 𝐼𝐹𝐷𝐴𝑇𝐴_𝑆𝑇𝐴𝐿𝐿

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

The event ICACHE.IFDATA_STALL measures the cycles for which a code fetch is stalled. 
# perf stat -e 
cpu/event=0x80,umask=0x4,name=icache_ifdata_stall/,cpu/event=0x3c,umask=0x0,name=cpu_clk_
unhalted_thread/ -C$CORENO -I1000 

or 

# ocperf.py stat -e ICACHE.IFDATA_STALL,CPU_CLK_UNHALTED.THREAD  -C$CORENO  -I1000 

 

%Frontend_Bound.Frontend_Latency.ITLB_Misses(%) 
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For many network applications the execution path for processing a packet could be 
relatively small. Considering large ITLB (Instructions TLB), the chances of having ITLB 
miss are relatively small. Even if there is an ITLB miss, it is likely that the ITLB entry is 
present in the second level TLB. The overall impact of ITLB Miss could be calculated as 
follows: 

%	𝐼𝑇𝐿𝐵	𝑀𝑖𝑠𝑠𝑒𝑠	 = 	
7 ∗ 𝐼𝑇𝐿𝐵_𝑀𝐼𝑆𝑆𝐸𝑆. 𝑆𝑇𝐿𝐵_𝐻𝐼𝑇 + 	𝐼𝑇𝐿𝐵_𝑀𝐼𝑆𝑆𝐸𝑆.𝑊𝐴𝐿𝐾_𝐷𝑈𝑅𝐴𝑇𝐼𝑂𝑁

𝐶𝑃𝑈_𝐶𝐿𝐾_𝑈𝑁𝐻𝐴𝐿𝑇𝐸𝐷. 𝑇𝐻𝑅𝐸𝐴𝐷_𝐴𝑁𝑌
		

# perf stat -e 
cpu/event=0x85,umask=0x60,name=itlb_misses_stlb_hit/,cpu/event=0x85,umask=0x10,cmask=1,na
me=itlb_misses_walk_duration/ -C$CORENO -I1000  

or 

# ocperf.py stat -e ITLB_MISSES.STLB_HIT,ITLB_MISSES.WALK_DURATION:c1 -C$CORENO -I1000 

If %ITLB Misses is more than 0.01%, it is recommended to rearrange the code such that 
frequently accessed portions of the code fall into small number of the pages, thereby 
limiting ITLB misses. Alternatively, one can use large and super page size (2M or 1G) 
for the code segments to minimize ITLB misses.    

15.4 Events	related	to	TMAM	%Backend_Bound	

The events related to TMAM %Backend_Bound, %Backend_Bound.Memory, 
%Backend_Bound.Core could be measured through pmu-tools “top-level” analysis 
scripts. 
# toplev.py --core C$CORENO –l2 --no-desc -v --ignore-errata sleep 300 

There are many events pertaining to %Backend Level 1 and Level 2. Only a handful of 
them are described below. 
 

%Backend_Bound.Memory.L1_Bound 
# perf stat -e 
cpu/event=0xa3,umask=0x6,cmask=6,name=cycle_activity_stalls_mem_any/,cpu/event=0xa3,umask
=0xc,cmask=12,name=cycle_activity_stalls_l1d_miss/ -C$CORENO -I1000 

or 

# ocperf.py stat -e cycle_activity.stalls_mem_any,cycle_activity.stalls_l1d_miss -
C$CORENO -I1000  

 
%Backend_Bound.Memory.L2_Bound 
# perf stat -e \ 
cpu/event=0xa3,umask=0xc,cmask=12,name=cycle_activity_stalls_l1d_miss/,cpu/event=0xa3,uma
sk=0x5,cmask=5,name=cycle_activity_stalls_l2_miss/ -C$CORENO -I1000 

or 

# ocperf.py stat -e CYCLE_ACTIVITY.STALLS_L1D_MISS,CYCLE_ACTIVITY.STALLS_L2_MISS -
C$CORENO -I1000 

 

%Backend_Bound.Memory.L3_Bound 



                                                                                                                          

 
83 

# perf stat -e 
cpu/event=0xd1,umask=0x4,name=mem_load_uops_retired_l3_hit/,cpu/event=0xd1,umask=0x20,nam
e=mem_load_uops_retired_l3_miss/,cpu/event=0xa3,umask=0x5,cmask=5,name=cycle_activity_sta
lls_l2_miss/ -C$CORENO -I1000 

or 

# ocperf.py stat -e 
MEM_LOAD_UOPS_RETIRED.L3_HIT,MEM_LOAD_UOPS_RETIRED.L3_MISS,CYCLE_ACTIVITY.STALLS_L2_MISS 
-C$CORENO -I1000 

 

%Backend_Bound.Memory.Store_Bound 
# perf stat -e cpu/event=0xa2,umask=0x8,name=resource_stalls_sb/ -C$CORENO -I1000 

or 

# ocperf.py stat -e RESOURCE_STALLS.SB -C$CORENO -I1000 

 

15.5 Measuring	Memory	Latency	
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑀𝑒𝑚𝑜𝑟𝑦_𝐿𝑎𝑡𝑒𝑛𝑐𝑦	(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑤𝑖𝑡ℎ𝑖𝑛	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 	

= 	
								∑	𝑂𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔_𝑀𝑒𝑚𝑜𝑟𝑦_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠_𝑖𝑛_𝑒𝑎𝑐ℎ_𝐶𝑦𝑐𝑙𝑒

#𝑅𝑒𝑡𝑖𝑟𝑒𝑑_𝑅𝑒𝑎𝑑_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
		

The core to system memory average memory latency can be measured using the 
following two events: 

• The event OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD counts the 
number of offcore outstanding cacheable Core Data Read transactions in the super 
queue every cycle. A transaction is considered to be in the Offcore outstanding state 
between L2 miss and transaction completion sent to requestor (SQ de-allocation).  

• The event OFFCORE_REQUESTS.ALL_DATA_RD counts the demand and 
prefetch data reads. 
# perf stat -e 
cpu/event=0x60,umask=0x1,name=offcore_requests_outstanding_demand_data_rd/,cpu/event=0
xb0,umask=0x1,name=offcore_requests_demand_data_rd/ -C$CORENO -I1000  

or 

# ocperf.py stat -e 
OFFCORE_REQUESTS_OUTSTANDING.DEMAND_DATA_RD,OFFCORE_REQUESTS.DEMAND_DATA_RD -C$CORENO 
-I1000  

 

15.6 Inter-Processor	Communications	within	the	same	socket	

Interactions between two cores within the same socket can be measured using the 
following three main performance events: 

1. The event MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT, counts retired load 
uops which data sources were L3 hit and a cross-core snoop hit in the on-package 
core cache. 

2. The event MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM, counts retired 
load uops which data sources were HitM responses from a core on same socket 
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(shared L3). Frequent sharing of modified line could be major source of performance 
bottlenecks. Such operations should be minimized when possible. 
# perf stat -e \ 
cpu/event=0xd2,umask=0x2,name=mem_load_uops_l3_hit_retired_xsnp_hit/,cpu/event=0xd2,um
ask=0x4,name=mem_load_uops_l3_hit_retired_xsnp_hitm/ -C$CORENO -I1000 

or 

# ocperf.py stat -e \  
MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HIT,MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_HITM  -
C2$CORNE -I1000 

3. The event MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS counts retired 
load uops which data sources were L3 Hit and a cross-core snoop missed in the on-
package core cache. 
# perf stat -e cpu/event=0xd2,umask=0x1,name=mem_load_uops_l3_hit_retired_xsnp_miss/ -
C$CORENO -I1000 

or 

# ocperf.py stat -e MEM_LOAD_UOPS_L3_HIT_RETIRED.XSNP_MISS -C$CORENO -I1000 

 

15.7 Inter-Socket	Communications	

The following events can be used to measure the number of cacheline accesses made to 
the other socket in a dual socket platform.  
1. The event offcore_response.demand_data_rd.llc_miss.remote_hitm counts the 

memory loads which were fulfilled by the remote socket LLC and the requested 
cachelines were in the modified state. 

# perf stat -e 
cpu/event=0xb7,umask=0x1,offcore_rsp=0x103fc00001,name=offcore_response_demand_data_rd_ll
c_miss_remote_hitm/ -C$CORENO -I1000 

or 

# ocperf.py stat -e offcore_response.demand_data_rd.llc_miss.remote_hitm   -C$CORENO -
I1000 

2. The event offcore_response.demand_data_rd.llc_miss.remote_hit_forward counts the 
memory loads which were fulfilled by the remote socket LLC where the requested 
lines were in Shared or Exclusive states. 

# perf stat -e 
cpu/event=0xb7,umask=0x1,offcore_rsp=0x87fc00001,name=offcore_response_demand_data_rd_llc
_miss_remote_hit_forward/ -C$CORENO -I1000 

or 

# ocperf.py stat -e offcore_response.demand_data_rd.llc_miss.remote_hit_forward   -
C$CORENO -I1000 

 

3. The event offcore_response.demand_data_rd.llc_miss.remote_dram counts the 
memory loads which were fulfilled by the System memory attached to the remote 
socket. 
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# perf stat -e 
cpu/event=0xb7,umask=0x1,offcore_rsp=0x63bc00001,name=offcore_response_demand_data_rd_llc
_miss_remote_dram/ -C$CORENO -I1000 

or 

#ocperf.py stat -e offcore_response.demand_data_rd.llc_miss.remote_dram   -C$CORENO -
I1000  

15.8 Other	Useful	Events		
DTLB misses can be monitored as follows:  
# perf stat -e \ 
cpu/event=0x8,umask=0x60,name=dtlb_load_misses_stlb_hit/,cpu/event=0x49,umask=0x60,name=d
tlb_store_misses_stlb_hit/ -C$CORENO -I1000 

or 

# ocperf.py stat -e DTLB_LOAD_MISSES.STLB_HIT,DTLB_STORE_MISSES.STLB_HIT -C1 -I1000 

 
The following commands can be used for monitoring the number of cycles when the 
Divider Unit of a core is active: 
# perf stat -e cpu/event=0x14,umask=0x1,name=arith_fpu_div_active/ -C$CORENO -I1000  

or 

# ocperf.py stat -e ARITH.FPU_DIV_ACTIVE -C$CORENO -I1000 
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